INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More

Contents

[hide]

Try this beautiful problem from PRMO, 2012 based on Triangle.

In \(\triangle ABC\) we have \(AC=BC=7\) and \(AB=2\).Suppose that \(D\) is a point on line \(AB\) such that \(B\) lies between \(A\) and \(D\) and \(CD=8\) .what is the length of the segment \(DB\)?

- \(5\)
- \(3\)
- \(7\)

Geometry

Triangle

Pythagoras

But try the problem first...

Answer:\(3\)

Source

Suggested Reading

PRMO-2012, Problem 7

Pre College Mathematics

First hint

Given that \(AC=BC=7\) & \(CD=8\).we have to find out \(BD\).Let \(BD=x\).we draw a perpendicular from \(C\) to \(AB\) at the point \(M\).Therefore clearly \(\triangle CMB\) & \(\triangle CMD\) are right angle.so if we can find out the value of \(CM\) from the \(\triangle CMB\) then we can find out the value \(BD\) from the \(\triangle CMD\)

Can you now finish the problem ..........

Second Step

From the above diagram,In \(\triangle CMB\) we can say that \(CM=\sqrt{49-1}=4\sqrt 3\)

Given \(AB=2\) and \(M\) is the mid point of \(\triangle ABC\) (As AC=BC=7,Isosceles triangle),

Therefore \(BM=1\), So \(MD=x+1\)

Final Step

From the \(\triangle CMD\), \((X+1)^2+(4\sqrt 3)^2=64\) \(\Rightarrow x=3,-5\)

we will take the positive value ,so \(BD=3\)

- https://www.cheenta.com/angles-in-a-circle-prmo-2018-problem-80/
- https://www.youtube.com/watch?v=M_HvBNmPcfU

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google