What is the NO-SHORTCUT approach for learning great Mathematics?
Learn More

May 21, 2020

Probability in Game | AMC-10A, 2005 | Problem 18

Try this beautiful problem from AMC 10A, 2005 based on Probability in Game.

Probability in Game - AMC-10A, 2005- Problem 18

Team A and team B play a series. The first team to win three games wins the series. Each team is equally likely to win each game, there are no ties, and the outcomes of the individual games are independent. If team B wins the second game and team A wins the series, what is the probability that team B wins the first game?

  • \(\frac{1}{4}\)
  • \(\frac{1}{6}\)
  • \(\frac{1}{5}\)
  • \(\frac{2}{3}\)
  • \(\frac{1}{3}\)

Key Concepts



Check the Answer

Answer: \(\frac{1}{5}\)

AMC-10A (2005) Problem 18

Pre College Mathematics

Try with Hints

Given that  The first team to win three games wins the series, team B wins the second game and team A wins the series. So the Total number of games played=\(5\). Now we have to find out the possible order of wins.....

Can you now finish the problem ..........

Possible cases :

If team B won the first two games, team A would need to win the next three games. Therefore the possible order of wins is BBAAA.
If team A won the first game, and team B won the second game, the possible order of wins is $A B B A A, A B A B A,$ and $A B A A X,$ where $X$ denotes that the 5th game wasn't played.
since ABAAX is dependent on the outcome of 4 games instead of 5, it is twice as likely to occur and can be treated as two possibilities.

According to the question, there is One possibility where team $\mathrm{B}$ wins the first game and 5 total possibilities, Therefore the required probability is \(\frac{ 1}{5}\)

Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.