Assume that a constant power P is supplied to an electric train and it is fully used in accelerating the train. Obtain relation giving the velocity of the train and distance travelled by it as functions of time.

**Solution: **

We know, power (P)= force(F)*velocity (v).

Therefore,

m dv/dt=P/v

or, vdv=P/m dt

Integrating both sides, we have

∫vdv= P/m ∫dt

v^{2}/2=P/m t+c

where c is a constant of integration.

Now, at t=0, v=0 so c=0.

Therefore,

Or, v = √(2Pt/m)……… (i)

We know, v= dx/dt

So, from equation (i)

dx/dt= √(2Pt/m)

Integrating both sides,

∫dx= √(2Pt/m) dt

or, x= (2/3)√(2P/m)t^{3/2}