Understand the problem

Given the polynomial $P(x)=(x^2-7x+6)^{2n}+13$ where $n$ is a positive integer. Prove that $P(x)$ can’t be written as a product of $n+1$ non-constant polynomials with integer coefficients.
Source of the problem
Vietnam MO 2014 Problem 2
Topic
Polynomial, Algebra
Difficulty Level
7/10
Suggested Book
Excursion in Mathematics by Bhaskaracharya Prathistan

Start with hints

Do you really need a hint? Try it first!

The idea is that if a polynomial can be factorized, then we must check if a polynomial has real roots or not. The first observation is that the given polynomial is always > 0 as it is of the form \( (f(x))^2 + 13 \). Hence, it has no real roots. So, if the polynomial can be factorized, then obviously the factors will not be linear.  An odd degree polynomial has atleast one real root. Hence, none of the factors will be odd degree.
So, we have seen the factors will not be linear. Hence, let’s investigate the factors and their properties if the polynomial can be factorized. Let us approach the method of contradiction. Assume that the polynomial can be factorized into n+1 factors with integer coefficients. Now, we know that the factors must have atleast degree 2, in fact only even degrees i.e. 2, 4, 6, … Now, let’s see if all the factors have a degree more than 2, then the degree of the whole polynomial must be \( \geq 4n + 4 \), but the degree of the polynomial is 4n. So, two of the factors must be of degree 2.
Hence there exist $a,b, c, d$ such that $(x^2+ax+b)(x^2+cx+d) \mid  P(x)$. Note that $f(x)=x^2+ax+b > 0$ and $g(x)=x^2+cx+d  > 0$ for all $x \in \mathbb R$, because they cannot have a real root. Now, we have to make use of the idea that the coefficients are integers. So, some idea of divisibility must come in. The given polynomial is $P(x)=(x^2-7x+6)^{2n}+13$ . Try to find out some values of x, for which P(x) is easily determined without n. See, x = 1 and 6 works as \( x^2 – 7x + 6 = (x-1)(x-6) \). 
So, we saw that x = 1 and x = 6 are good values and we get that P(1) = P(6) = 13. Also, we know that f(1).g(1) | P(1) = 13. So, one of them must be 1. Say, f(1) = 1 = 1 + a + b.  Also, f(6) = 36 + 6a – a = 36 + 5a.  Now, f(6) | P(6) = 13. So, f(6) = 36 + 5a = 1 or 13.  This gives rise to a single case of a = -7; where \( f(x) = x^2 -7x + 7\). But f(x) has real roots implying that P(x) has real roots. Hence contradiction. QED.  

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Tetrahedron Problem | AIME I, 1992 | Question 6

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1992 based on Tetrahedron Problem.

Triangle and integers | AIME I, 1995 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 based on Triangle and integers.

Functional Equation Problem from SMO, 2018 – Question 35

Try this problem from Singapore Mathematics Olympiad, SMO, 2018 based on Functional Equation. You may use sequential hints if required.

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.

Cubic Equation | AMC-10A, 2010 | Problem 21

Try this beautiful problem from Algebra, based on the Cubic Equation problem from AMC-10A, 2010. You may use sequential hints to solve the problem.

Median of numbers | AMC-10A, 2020 | Problem 11

Try this beautiful problem from Geometry based on Median of numbers from AMC 10A, 2020. You may use sequential hints to solve the problem.