How Cheenta works to ensure student success?
Explore the Back-Story

Polynomial Problem | PRMO-2018 | Question 30

Join Trial or Access Free Resources

Try this beautiful Polynomial Problem from Number theorm from PRMO 2018, Question 30.

Polynomial Problem - PRMO 2018, Question 30

Let $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{n} x^{n}$ be a polynomial in which $a_{i}$ is non-negative integer for each $\mathrm{i} \in{0,1,2,3, \ldots, \mathrm{n}} .$ If $\mathrm{P}(1)=4$ and $\mathrm{P}(5)=136,$ what is the value of $\mathrm{P}(3) ?$

  • $30$
  • $34$
  • $36$
  • $39$
  • $42$

Key Concepts

Number theorm



Check the Answer


PRMO-2018, Problem 30

Pre College Mathematics

Try with Hints

Given that $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{n} x^{n}$ where $\mathrm{P}(1)=4$ and $\mathrm{P}(5)=136$. Now we have to find out $P(3)$.

Therefore if we put $x=1$ and $x=5$ then we will get two relations . Using these relations we can find out $a_0$ , $a_1$, $a_2$ .

Can you now finish the problem ..........

$a_{0}+a_{1}+a_{2}+\ldots \ldots+a_{n}=4$
$\Rightarrow a_{i} \leq 4$
$a_{0}+5 a_{1}+5^{2} a_{2}+\ldots+a 5^{n} a_{n}=136$
$\Rightarrow a_{0}=1+5 \lambda \Rightarrow a_{0}=1$

Can you finish the problem........

Hence $5 a_{1}+5^{2} a_{2}+\ldots \ldots+5^{n} a_{n}=135$
$a_{1}+5 a_{2}+\ldots 5^{n-1} a_{n-1}=27$
$\Rightarrow a_{1}=5 \lambda+2 \Rightarrow a_{1}=2$
$\Rightarrow 5 a_{2}+\ldots .5^{n-1} a_{n-1}=25$
$a_{2}+5 a_{3}+\ldots .5^{n-2} a_{n-2}=5$
$\Rightarrow a_{2}=5 \lambda \Rightarrow a_{2}=0$
$a_{3}+5 a_{4}+\ldots \ldots \ldots+5^{n-3} a_{n-3}=1$
$\Rightarrow a_{4}+5 a_{5}+\ldots .+5^{n-4} a_{n-3}=0$
$a_{4}=a_{5}=\ldots . a_{n}=0$
Hence $P(n)=x^{3}+2 x+1$

Subscribe to Cheenta at Youtube

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
Math Olympiad Program