Try this beautiful Polynomial Problem from Number theorm from PRMO 2018, Question 30.
Let $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{n} x^{n}$ be a polynomial in which $a_{i}$ is non-negative integer for each $\mathrm{i} \in{0,1,2,3, \ldots, \mathrm{n}} .$ If $\mathrm{P}(1)=4$ and $\mathrm{P}(5)=136,$ what is the value of $\mathrm{P}(3) ?$
Number theorm
Polynomial
integer
But try the problem first...
Answer:$34$
PRMO-2018, Problem 30
Pre College Mathematics
First hint
Given that $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{n} x^{n}$ where $\mathrm{P}(1)=4$ and $\mathrm{P}(5)=136$. Now we have to find out $P(3)$.
Therefore if we put $x=1$ and $x=5$ then we will get two relations . Using these relations we can find out $a_0$ , $a_1$, $a_2$ .
Can you now finish the problem ..........
Second Hint
$a_{0}+a_{1}+a_{2}+\ldots \ldots+a_{n}=4$
$\Rightarrow a_{i} \leq 4$
$a_{0}+5 a_{1}+5^{2} a_{2}+\ldots+a 5^{n} a_{n}=136$
$\Rightarrow a_{0}=1+5 \lambda \Rightarrow a_{0}=1$
Can you finish the problem........
Final Step
Hence $5 a_{1}+5^{2} a_{2}+\ldots \ldots+5^{n} a_{n}=135$
$a_{1}+5 a_{2}+\ldots 5^{n-1} a_{n-1}=27$
$\Rightarrow a_{1}=5 \lambda+2 \Rightarrow a_{1}=2$
$\Rightarrow 5 a_{2}+\ldots .5^{n-1} a_{n-1}=25$
$a_{2}+5 a_{3}+\ldots .5^{n-2} a_{n-2}=5$
$\Rightarrow a_{2}=5 \lambda \Rightarrow a_{2}=0$
$a_{3}+5 a_{4}+\ldots \ldots \ldots+5^{n-3} a_{n-3}=1$
$a_{3}=1$
$\Rightarrow a_{4}+5 a_{5}+\ldots .+5^{n-4} a_{n-3}=0$
$a_{4}=a_{5}=\ldots . a_{n}=0$
Hence $P(n)=x^{3}+2 x+1$
$P(3)=34$
Try this beautiful Polynomial Problem from Number theorm from PRMO 2018, Question 30.
Let $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{n} x^{n}$ be a polynomial in which $a_{i}$ is non-negative integer for each $\mathrm{i} \in{0,1,2,3, \ldots, \mathrm{n}} .$ If $\mathrm{P}(1)=4$ and $\mathrm{P}(5)=136,$ what is the value of $\mathrm{P}(3) ?$
Number theorm
Polynomial
integer
But try the problem first...
Answer:$34$
PRMO-2018, Problem 30
Pre College Mathematics
First hint
Given that $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{n} x^{n}$ where $\mathrm{P}(1)=4$ and $\mathrm{P}(5)=136$. Now we have to find out $P(3)$.
Therefore if we put $x=1$ and $x=5$ then we will get two relations . Using these relations we can find out $a_0$ , $a_1$, $a_2$ .
Can you now finish the problem ..........
Second Hint
$a_{0}+a_{1}+a_{2}+\ldots \ldots+a_{n}=4$
$\Rightarrow a_{i} \leq 4$
$a_{0}+5 a_{1}+5^{2} a_{2}+\ldots+a 5^{n} a_{n}=136$
$\Rightarrow a_{0}=1+5 \lambda \Rightarrow a_{0}=1$
Can you finish the problem........
Final Step
Hence $5 a_{1}+5^{2} a_{2}+\ldots \ldots+5^{n} a_{n}=135$
$a_{1}+5 a_{2}+\ldots 5^{n-1} a_{n-1}=27$
$\Rightarrow a_{1}=5 \lambda+2 \Rightarrow a_{1}=2$
$\Rightarrow 5 a_{2}+\ldots .5^{n-1} a_{n-1}=25$
$a_{2}+5 a_{3}+\ldots .5^{n-2} a_{n-2}=5$
$\Rightarrow a_{2}=5 \lambda \Rightarrow a_{2}=0$
$a_{3}+5 a_{4}+\ldots \ldots \ldots+5^{n-3} a_{n-3}=1$
$a_{3}=1$
$\Rightarrow a_{4}+5 a_{5}+\ldots .+5^{n-4} a_{n-3}=0$
$a_{4}=a_{5}=\ldots . a_{n}=0$
Hence $P(n)=x^{3}+2 x+1$
$P(3)=34$