INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

May 2, 2020

Points of Equilateral triangle | AIME I, 1994 | Question 8

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1994 based on Points of Equilateral triangle.

Points of Equilateral triangles - AIME I, 1994

The points (0,0), (a,11), and (b,37) are the vertices of equilateral triangle, find the value of ab.

  • is 107
  • is 315
  • is 840
  • cannot be determined from the given information

Key Concepts


Complex Number

Equilateral Triangle

Check the Answer

Answer: is 315.

AIME I, 1994, Question 8

Complex Numbers from A to Z by Titu Andreescue

Try with Hints

First hint

Let points be on complex plane as b+37i, a+11i and origin.

Second Hint

then \((a+11i)cis60=(a+11i)(\frac{1}{2}+\frac{\sqrt{3}i}{2})\)=b+37i

Final Step

equating real parts b=\(\frac{a}{2}-\frac{11\sqrt{3}}{2}\) is first equation

equating imaginary parts 37=\(\frac{11}{2}+\frac{a\sqrt{3}i}{2}\) is second equation

solving both equations a=\(21\sqrt{3}\), b=\(5\sqrt{3}\)


Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.