What is the NO-SHORTCUT approach for learning great Mathematics?

Learn MoreFor Students who are passionate for Mathematics and want to pursue it for higher studies in India and abroad.

**“The Pigeonhole principle”** ~ Students who have never heard may think that it is a joke. Pigeonhole Principle is one of the simplest but most useful ideas in mathematics. Let’s learn the Pigeonhole Principle with some applications.

In Discrete Mathematics, the pigeonhole principle states that if we must put N + 1 or more pigeons into N Pigeon Holes, then some pigeonholes must contain two or more pigeons.

If Kn+ 1 (where k is a positive integer) pigeons are distributed among n holes than some hole contains at least k + 1 pigeons.

This principle is applicable in many fields like **Number Theory, Probability, Algorithms, Geometry, etc**.

A bag contains beads of two colours: black and white. What is the smallest number of beads which must be drawn from bag, without looking so that among these beads, two are of the same colour?

**Solution:** We can draw three beads from bags. If there were no more than one bead of each colour among these, then there would be no more than two beads altogether. This is obvious and contradicts the fact that we have chosen there beads. On the other hand, it is clear that choosing two beads is not enough. Here the beads play the role of pigeons, and the colours (black and white) play the role of pigeonhole.

Find the minimum number of students in a class such that three of them are born in the same month?

**Solution:** Number of month n =12

According to the given condition,

K+1 = 3

K = 2

M = kn +1 = 2*12 + 1 = 25.

Show that from any three integers, one can always chose two so that $a^3$b – a$b^3$ is divisible by 10.

**Solution:** We can factories the term $a^3$b – a$b^3$ = ab(a + b)(a - b), which is always even, irrespective of the pair of integers we choose.

If one of three integers from the above factors is in the form of 5k, which is a multiple of 5, then our result is proved.

If none of the integers are a multiple of 5 then the chosen integers should be in the form of (5k)+-(1) and (5k)+-(2) respectively.

Clearly, two of these three numbers in the above factors from the given expression should lie in one of the above two from, which follows by the virtue of this principle.

These two integers are the ones such that their sum and difference is always divisible by 5. Hence, our result is proved.

If n is a positive integer not divisible by 2 or 5 then n has a multiple made up of 1's.

**Watch the solution:**

What to do to shape your Career in Mathematics after 12th?

From the video below, let's learn from Dr. Ashani Dasgupta (a Ph.D. in Mathematics from the University of Milwaukee-Wisconsin and Founder-Faculty of Cheenta) how you can shape your career in Mathematics and pursue it after 12th in India and Abroad. These are some of the key questions that we are discussing here:

- What are some of the best colleges for Mathematics that you can aim to apply for after high school?
- How can you strategically opt for less known colleges and prepare yourself for the best universities in India or Abroad for your Masters or Ph.D. Programs?
- What are the best universities for MS, MMath, and Ph.D. Programs in India?
- What topics in Mathematics are really needed to crack some great Masters or Ph.D. level entrances?
- How can you pursue a Ph.D. in Mathematics outside India?
- What are the 5 ways Cheenta can help you to pursue Higher Mathematics in India and abroad?

Cheenta has taken an initiative of helping College and High School Passout Students with its "Open Seminars" and "Open for all Math Camps". These events are extremely useful for students who are really passionate for Mathematic and want to pursue their career in it.

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google