Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Permutation and basic counting principle AMC 8 2012, problem 10

[et_pb_section fb_built="1" _builder_version="4.0"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

What are we learning ?

[/et_pb_text][et_pb_text _builder_version="4.1" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Competency in Focus: Basic counting principle and permutation   This problem from American Mathematics contest (AMC 8, 2012) [/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

First look at the knowledge graph.

[/et_pb_text][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/01/AMC-8-2012-problem-10-1.png" align="center" force_fullwidth="on" _builder_version="4.1" min_height="252px" height="284px" max_height="411px"][/et_pb_image][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Next understand the problem

[/et_pb_text][et_pb_text _builder_version="4.1" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]How many 4-digit numbers greater than 1000 are there that use the four digits of 2012?[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.0"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.1" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.1"]American Mathematical Contest 2012, AMC 8 Problem 10[/et_pb_accordion_item][et_pb_accordion_item title="Key Competency" _builder_version="4.1" open="off"]Permutation and basic counting principle[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.1" open="off"]4/10[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.0.9" open="off"]Challenges and Thrills in Pre College Mathematics Excursion Of Mathematics 

[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="4.0.9" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|0px|20px||" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Start with hints

[/et_pb_text][et_pb_tabs _builder_version="4.1"][et_pb_tab title="HINT 0" _builder_version="4.0.9"]Do you really need a hint? Try it first![/et_pb_tab][et_pb_tab title="HINT 1" _builder_version="4.1"]For this problem, all we need to do is find the amount of valid 4-digit numbers that can be made from the digits of $2012$, since all of the valid 4-digit number will always be greater than $1000$.  [/et_pb_tab][et_pb_tab title="HINT 2" _builder_version="4.1"]The best way to solve this problem is by using casework. Now think what are the cases?  [/et_pb_tab][et_pb_tab title="HINT 3" _builder_version="4.1"]It has two cases , as there can be only two leading digits, namely $1$ or $2$.[/et_pb_tab][et_pb_tab title="HINT 4" _builder_version="4.1"]We know  that number of ways of arranging ‘n’ items, out of which ‘p’ are alike, ‘q’ are alike and ‘r’ are alike given that p + q + r = n Number of ways of distributing ‘n’ distinct items, in groups of size ‘p’, ‘q’ and ‘r’ given that p + q + r = n 5. . Now try to calculate the the two cases .[/et_pb_tab][et_pb_tab title="HINT 5" _builder_version="4.1"]CASE 1: As 2012 consits of two 2's , one 1, 0 so if we set 1 as the leading digit then we have two twos and one 0 such numbers then we have  $\frac{3!}{2!1!} \implies 3$ such numbers.  [/et_pb_tab][et_pb_tab title="HINT 6" _builder_version="4.1"]When the leading digit is $2$ then we have one 2, one 1 and one 0 then we can arrange them in  $3! \implies 6$ ways and as such we have 6 such numbers.[/et_pb_tab][et_pb_tab title="HINT 7" _builder_version="4.1"]By addition principle we find that there are  9 such numbers.[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Similar Problems

[/et_pb_text][et_pb_post_nav in_same_term="off" _builder_version="4.0.9"][/et_pb_post_nav][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" fullwidth="on" _builder_version="4.2.2" global_module="50833" saved_tabs="all"][et_pb_fullwidth_header title="AMC - AIME Program" button_one_text="Learn More" _builder_version="4.2.2" button_one_url="https://www.cheenta.com/amc-aime-usamo-math-olympiad-program/" hover_enabled="0" custom_button_one="on" button_one_bg_color="#ffffff" button_one_bg_enable_color="on" button_one_border_color="#ffffff" button_one_text_color="#44580e" button_one_border_radius="5px" background_color="#00457a" header_image_url="https://www.cheenta.com/wp-content/uploads/2018/03/matholympiad.png"]AMC - AIME - USAMO Boot Camp for brilliant students. Use our exclusive one-on-one plus group class system to prepare for Math Olympiad [/et_pb_fullwidth_header][/et_pb_section]

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com