Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1996 based on Parallelogram.

Parallelogram Problem – AIME I, 1996

In parallelogram ABCD , Let O be the intersection of diagonals AC and BD, angles CAB and DBC are each twice as large as angle DBA and angle ACB is r times as large as angle AOB. Find the greatest integer that does not exceed 1000r.

  • is 107
  • is 777
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

But try the problem first…

Answer: is 777.

Suggested Reading

AIME I, 1996, Question 15

Geometry Vol I to IV by Hall and Stevens

Try with Hints

First hint

Let \(\theta= \angle DBA\)

\(\angle CAB=\angle DBC=2 \theta\)

or, \(\angle AOB=180-3\theta, \angle ACB=180-5\theta\)

or, since ABCD parallelogram, OA=OC

Parallelogram Problem

Second Hint

by sine law on \(\Delta\)ABO, \(\Delta\)BCO

\(\frac{sin\angle CBO}{OC}\)=\(\frac{sin\angle ACB}{OB}\)

and \(\frac{sin\angle DBA}{OC}=\frac{sin\angle BAC}{OB}\)

here we divide and get \(\frac{sin2\theta}{sin\theta}\)=\(\frac{sin(180-5\theta)}{sin 2\theta}\)

\(\Rightarrow sin^{2}{2\theta}=sin{5\theta}sin{\theta}\)

Final Step

\(\Rightarrow 1-cos^{2}2\theta=\frac{cos4\theta-cos6\theta}{2}\)

or, \(4 cos^{3}2\theta-4cos^{2}2\theta -3cos2\theta+3=(4cos^{2}2\theta-3)(cos2\theta-1)=0 [using cos3\theta=4cos^{3}\theta-3cos\theta]\)

or, \(cos 2\theta=\frac{\sqrt{3}}{2}\)

or, \(\theta\)=15


Subscribe to Cheenta at Youtube