  How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.22.4" text_font="Raleway||||||||" background_color="#f4f4f4" box_shadow_style="preset2" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px"]Azambuja writes a rational number $q$ on a blackboard. One operation is to delete $q$ and replace it by $q+1$; or by $q-1$; or by $\frac{q-1}{2q-1}$ if $q \neq \frac{1}{2}$. The final goal of Azambuja is to write the number $\frac{1}{2018}$ after performing a finite number of operations. Show that if the initial number written is $0$, then Azambuja cannot reach his goal.

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.23.3" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="3.23.3"]

Do you really need a hint? Just try it yourself! [/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.23.3"]It is always a good idea to try using the invariance principle in such problems. [/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.23.3"]Make a change of variables to see patterns. [/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.23.3"]Note that the operation is restricted to rational numbers. Hence, writing $q=\frac{r}{s}=(r,s)$ could help. [/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.23.3"]Let us denote by $q_n$ the number on the board at the $n$th step. We shall use the new variable $a_n=2q_n-1$ (just to simplify the denominator). Clearly, $a_{n+1}$ is either $a_n\pm 2$ or $-\frac{1}{a_n}$. Writing $a_n=(r_n,s_n)$, this means that $(r_{n+1},s_{n+1})$ is either $(r_n \pm 2s_n,s_n)$ or $(-s_n,r_n)$. Thus, we need to find out if $(-1008,1009)$ is reachable starting from $(-1,1)$. However, (odd, odd) pairs can produce only other (odd,odd) pairs under this operation, and $(-1008,1009)$ is an (even, even) pair. Hence $\frac{1}{2018}$ cannot be reached starting from 0. [/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px"]

# Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

# Knowledge Partner  