Understand the problem

Azambuja writes a rational number $q$ on a blackboard. One operation is to delete $q$ and replace it by $q+1$; or by $q-1$; or by $\frac{q-1}{2q-1}$ if $q \neq \frac{1}{2}$. The final goal of Azambuja is to write the number $\frac{1}{2018}$ after performing a finite number of operations. Show that if the initial number written is $0$, then Azambuja cannot reach his goal.

Source of the problem
Brazilian national mathematical olympiad 2018
Topic
Invariance
Difficulty Level
Easy
Suggested Book
Problem Solving Strategies by Arthur Engel

Start with hints

Do you really need a hint? Just try it yourself!

It is always a good idea to try using the invariance principle in such problems.
Make a change of variables to see patterns.
Note that the operation is restricted to rational numbers. Hence, writing q=\frac{r}{s}=(r,s) could help.
Let us denote by q_n the number on the board at the nth step. We shall use the new variable a_n=2q_n-1 (just to simplify the denominator). Clearly, a_{n+1} is either a_n\pm 2 or -\frac{1}{a_n}. Writing a_n=(r_n,s_n), this means that (r_{n+1},s_{n+1}) is either (r_n \pm 2s_n,s_n) or (-s_n,r_n). Thus, we need to find out if (-1008,1009) is reachable starting from (-1,1). However, (odd, odd) pairs can produce only other (odd,odd) pairs under this operation, and (-1008,1009) is an (even, even) pair. Hence \frac{1}{2018} cannot be reached starting from 0.

Watch the video (Coming Soon)

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.

Median of numbers | AMC-10A, 2020 | Problem 11

Try this beautiful problem from Geometry based on Median of numbers from AMC 10A, 2020. You may use sequential hints to solve the problem.

LCM and Integers | AIME I, 1998 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1998, Problem 1, based on LCM and Integers.

Cubic Equation | AMC-10A, 2010 | Problem 21

Try this beautiful problem from Algebra, based on the Cubic Equation problem from AMC-10A, 2010. You may use sequential hints to solve the problem.

Problem on Fraction | AMC 10A, 2015 | Question 15

Try this beautiful Problem on Fraction from Algebra from AMC 10A, 2015. You may use sequential hints to solve the problem.

Pen & Note Books Problem| PRMO-2017 | Question 8

Try this beautiful Pen & Note Books Problem from Algebra from PRMO 2017, Question 8. You may use sequential hints to solve the problem.