INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

June 6, 2019

Numbers on a blackboard

[et_pb_section fb_built="1" _builder_version="3.22.4"][et_pb_row _builder_version="3.22.4"][et_pb_column type="4_4" _builder_version="3.22.4"][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_padding="20px|20px|20px|20px"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.22.4" text_font="Raleway||||||||" background_color="#f4f4f4" box_shadow_style="preset2" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px"]Azambuja writes a rational number $q$ on a blackboard. One operation is to delete $q$ and replace it by $q+1$; or by $q-1$; or by $\frac{q-1}{2q-1}$ if $q \neq \frac{1}{2}$. The final goal of Azambuja is to write the number $\frac{1}{2018}$ after performing a finite number of operations. Show that if the initial number written is $0$, then Azambuja cannot reach his goal.

[/et_pb_text][et_pb_text _builder_version="3.22.4" text_font="Raleway||||||||" background_color="#f4f4f4" box_shadow_style="preset2" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px"][/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.22.4"][et_pb_column type="4_4" _builder_version="3.22.4"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.23.3" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="3.23.3" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" closed_title_text_shadow_horizontal_length="0em" closed_title_text_shadow_vertical_length="0em" closed_title_text_shadow_blur_strength="0em"]Brazilian national mathematical olympiad 2018[/et_pb_accordion_item][et_pb_accordion_item title="Topic" open="off" _builder_version="3.23.3" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" closed_title_text_shadow_horizontal_length="0em" closed_title_text_shadow_vertical_length="0em" closed_title_text_shadow_blur_strength="0em"]Invariance[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" open="off" _builder_version="3.23.3" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" closed_title_text_shadow_horizontal_length="0em" closed_title_text_shadow_vertical_length="0em" closed_title_text_shadow_blur_strength="0em"]Easy[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" open="off" _builder_version="3.23.3" title_text_shadow_horizontal_length="0em" title_text_shadow_vertical_length="0em" title_text_shadow_blur_strength="0em" closed_title_text_shadow_horizontal_length="0em" closed_title_text_shadow_vertical_length="0em" closed_title_text_shadow_blur_strength="0em"]Problem Solving Strategies by Arthur Engel[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.23.3" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="3.23.3"]

Do you really need a hint? Just try it yourself! [/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.23.3"]It is always a good idea to try using the invariance principle in such problems. [/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.23.3"]Make a change of variables to see patterns. [/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.23.3"]Note that the operation is restricted to rational numbers. Hence, writing q=\frac{r}{s}=(r,s) could help. [/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.23.3"]Let us denote by q_n the number on the board at the nth step. We shall use the new variable a_n=2q_n-1 (just to simplify the denominator). Clearly, a_{n+1} is either a_n\pm 2 or -\frac{1}{a_n}. Writing a_n=(r_n,s_n), this means that (r_{n+1},s_{n+1}) is either (r_n \pm 2s_n,s_n) or (-s_n,r_n). Thus, we need to find out if (-1008,1009) is reachable starting from (-1,1). However, (odd, odd) pairs can produce only other (odd,odd) pairs under this operation, and (-1008,1009) is an (even, even) pair. Hence \frac{1}{2018} cannot be reached starting from 0. [/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px"]

Watch the video (Coming Soon)

[/et_pb_text][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="Math Olympiad Program" url="https://www.cheenta.com/matholympiad/" url_new_window="on" image="https://www.cheenta.com/wp-content/uploads/2018/03/matholympiad.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://www.cheenta.com/matholympiad/" link_option_url_new_window="on"]

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/matholympiad/" url_new_window="on" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3" background_layout="dark"][/et_pb_button][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px"]

Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com