Categories
Algebra Arithmetic Math Olympiad USA Math Olympiad

Numbers of positive integers | AIME I, 2012 | Question 1

Try this beautiful problem number 1 from the American Invitational Mathematics Examination, AIME, 2012 based on Numbers of positive integers.

Try this beautiful problem from the American Invitational Mathematics Examination, AIME 2012 based on Numbers of positive integers.

Numbers of positive integers – AIME 2012


Find the number of positive integers with three not necessarily distinct digits, \(abc\), with \(a \neq 0\) and \(c \neq 0\) such that both \(abc\) and \(cba\) are multiples of \(4\).

  • is 107
  • is 40
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Number Theory

Algebra

Check the Answer


But try the problem first…

Answer: is 40.

Source
Suggested Reading

AIME, 2012, Question 1.

Elementary Number Theory by David Burton .

Try with Hints


First hint

Here a number divisible by 4 if a units with tens place digit is divisible by 4

Second Hint

Then case 1 for 10b+a and for 10b+c gives 0(mod4) with a pair of a and c for every b

[ since abc and cba divisible by 4 only when the last two digits is divisible by 4 that is 10b+c and 10b+a is divisible by 4]

and case II 2(mod4) with a pair of a and c for every b

Then combining both cases we get for every b gives a pair of a s and a pair of c s

Final Step

So for 10 b’s with 2 a’s and 2 c’s for every b gives \(10 \times 2 \times 2\)

Then number of ways \(10 \times 2 \times 2\) = 40 ways.

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.