Understand the problem

Determine all pairs $(m, n)$ of non-negative integers that satisfy the equation
$$
 20^m - 10m^2 + 1 = 19^n.
$$
Source of the problem
South Africa MO 2019, Problem 6
Topic
Number Theory
Difficulty Level
7/10
Suggested Book
Excursion in Mathematics by Bhaskaracharya Prathisthan

Start with hints

Do you really need a hint? Try it first!

If you read this, you will get to know some techniques to explore Diophantine Equations. Let’s get an idea of m and n  by using the modulo technique. To get an idea of n, we must remove or eliminate m, to do that we take modulo 10. Observe that the equation demands to be taken modulo 10, given the numbers and it turns out that \( 19^n = (-1)^n = 1 mod 10 \). It implies that n must be even. Try to get an idea of m now. Also, (0,0) is a solution. So, we take both m and n as non-zero.

To remove n, using the information that n is even, we can remove the variable n, taking modulo 4. So, \( 2m^2 + 1 = 1 mod 4  \) implies m must be even. Let m = 2p.

Observe that RHS is a square and LHS \( < 20^{2p} \).

The largest square \( < 20^{2p}\) is \( (20^{p} – 1)^2\). Thus,  \( LHS \leq (20^{p} – 1)^2 \). Hence $20^{2p} - 10(2p)^2 + 1 ~\le~ (20^p-1)^2 ~=~ 20^{2p}-2\cdot20^p+1$,
which simplifies to   $p^2\ge20^{p-1}$. (*)
Now, this turns out to be inequality and this results in the solution p = 1. This gives the only solution (2,2) as (m,n).

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Tetrahedron Problem | AIME I, 1992 | Question 6

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1992 based on Tetrahedron Problem.

Triangle and integers | AIME I, 1995 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 based on Triangle and integers.

Functional Equation Problem from SMO, 2018 – Question 35

Try this problem from Singapore Mathematics Olympiad, SMO, 2018 based on Functional Equation. You may use sequential hints if required.

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.

Cubic Equation | AMC-10A, 2010 | Problem 21

Try this beautiful problem from Algebra, based on the Cubic Equation problem from AMC-10A, 2010. You may use sequential hints to solve the problem.

Median of numbers | AMC-10A, 2020 | Problem 11

Try this beautiful problem from Geometry based on Median of numbers from AMC 10A, 2020. You may use sequential hints to solve the problem.