Understand the problem

The sequence of positive integers $a_1, a_2, a_3, ...$ satisfies $a_{n+1} = a^2_{n} + 2018$ for $n \ge 1$.
Prove that there exists at most one $n$ for which $a_n$ is the cube of an integer.

Source of the problem

Ireland MO 2018, Problem 9

Topic
Number Theory
Difficulty Level
8/10
Suggested Book
Excursion in Mathematics by Bhaskaryacharya Prathisthan

Start with hints

Do you really need a hint? Try it first!

, wIt is so important to know and use the modulo technqiue at the right time.  We will use the modulo technique, i.e. we will see the problem through the lens of modulo some number. What is that number? If you visit this website, you will understand that to handle cubes modulo something is 9. So, we will deal the whole equation modulo 9.  

Definition: kth power residue of a number n is the complete residue system modulo n. For eg: Quadratic Residue (2nd power) of 4 is {0,1}.

  • Cubic(3rd) Power Residue of 9 is {0,1,-1}.
  • 6th Power Residue of 9 is {0,1}
  • Quadratic(2nd Power) Residue of 9 is {0,1,4,7}
We will use these ideas here.  
Let $a_k$ be the smallest integer which is a cube; let $a_k=a^3$. Note that, $a_{k+1}=a^6+2018$.  Now, the modulo picture comes in. Starting from this cube. We will observe the sequence modulo 9. Case 1: \( a_k = 0\) mod 9 Then, the sequence modulo 9 will be  $0 \mapsto 2 \mapsto 6 \mapsto 2 \mapsto \dots$ Hence, there are no further cubes possible as the cubic residues of 9  are {0,1,-1}.
Case 2: \( a_k = 1,-1\) mod 9 Then, the sequence modulo 9 will be  $\pm 1 \mapsto 3 \mapsto 2 \mapsto 6 \mapsto 2 \mapsto \dots$ Hence, there are no further cubes possible as the cubic residues of 9  are {0,1,-1}. QED

Watch video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Problem on Series | SMO, 2009 | Problem No. 25

Try this beautiful problem from Singapore Mathematics Olympiad, SMO, 2009 based on Problem on Series. You may use sequential hints to solve the problem.

Area of The Region | AMC-8, 2017 | Problem 25

Try this beautiful problem from Geometry: The area of the region, AMC-8, 2017. You may use sequential hints to solve the problem.

Area of the figure | AMC-8, 2014 | Problem 20

Try this beautiful problem from Geometry:Area inside the rectangle but outside all three circles.AMC-8, 2014. You may use sequential hints to solve the problem

Squares and Triangles | AIME I, 2008 | Question 2

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2008 based on Squares and Triangles.

Percentage Problem | AIME I, 2008 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2008 based on Percentage. you may use sequential hints.

Smallest Positive Integer | PRMO 2019 | Question 14

Try this beautiful problem from the Pre-RMO, 2019 based on Smallest Positive Integer. You may use sequential hints to solve the problem.

Complex Numbers and Triangles | AIME I, 2012 | Question 14

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on Complex Numbers and Triangles.

Triangles and Internal bisectors | PRMO 2019 | Question 10

Try this beautiful problem from the Pre-RMO, 2019 based on Triangles and Internal bisectors. You may use sequential hints to solve the problem.

Angles in a circle | PRMO-2018 | Problem 80

Try this beautiful problem from PRMO, 2018 based on Angles in a circle. You may use sequential hints to solve the problem.

Circles and Triangles | AIME I, 2012 | Question 13

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on Circles and triangles.