  How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# Understand the problem

[/et_pb_text][et_pb_text _builder_version="4.0" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Find all positive rational $(x,y)$ that satisfy the equation : $yx^y=y+1$[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.22.4" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.0"]Greece MO 2019, Problem 3[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="4.0" open="off"]Number Theory[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.0" open="off"]7/10[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.0" open="off"]Challenges and Thrills of Pre College Mathematics[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.22.4" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="4.0"]Let us the given equation in terms of rational numbers and simplify the equation. Let $y=\frac{p}{q}$ and $x=\frac{r}{s}$ where $\gcd(p,q)=\gcd(r,s)=1$. We have $p\cdot \left(\frac{r}{s}\right)^{\frac{p}{q}}=p+q \Longleftrightarrow p^q \cdot r^p=(p+q)^q \cdot s^p$ And since $\gcd(p+q,p)=\gcd(r,s)=1$ we must have $p^q=s^p$ and $r^p=(p+q)^q$. Now, we have to find the solutions from these equations.[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="4.0"]Observe both the equations are of the form $x^a = y^b$. The idea is that due to the prime factorization theorem, we can specify that $x^a = y^b$ leads to a special form of the x and y. Claim: If $x^a=y^b$ for some $x,y,a,b$ naturals , then there exists a natural $z$ such that $x=z^m$ and $y=z^n$ where $m=\frac{b}{\gcd(a,b)}$ and $n=\frac{a}{\gcd(a,b)}$.[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="4.0"]Proof of Claim: Consider the prime factorization theorem of the x and y in $x^a = y^b$. Observe that it implies x and y must have same set of primes by the prime factorization theorem. Let x and y contain the primes $p_1, p_2, ..., p_k$. Let $x = \prod_{i=1}^{k} x_i$ and $y = \prod_{i=1}^{k} y_i$. The above equation implies that $a.x_i = b.y_i$. This implies that $y_i = n.c$ and $x_i = m.c$, where c is a natural number. Hence $x = z^m, y = z^n$.

[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="4.0"]Using the intuitive claim, $p^q=s^p$ , there exists a $z$ such that $p=z^p$ , if $z \neq 1$ we have $p=z^p=z^{z^p}$ and continuing like this , $p$ is unbounded ,contradiction. So , we must have $z=1$ wich means $p=s=1$ and from $r^p=(p+q)^q$ we have $r=(q+1)^q$ So, the solutions come out to be $x=(q+1)^q$ and $y=\frac{1}{q}$, where $q$ is any positive integer.[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

# Watch video

[/et_pb_text][et_pb_code _builder_version="3.26.4"]

# Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

# Knowledge Partner  