 # Understand the problem

Find all pairs of prime numbers $(p, q)$ for which $7pq^2 + p = q^3 + 43p^3 + 1$
##### Source of the problem
Dutch MO 2015 Problem 4
Number Theory
5/10
##### Suggested Book
Challenges and Thrills in Pre College Mathematics

Do you really need a hint? Try it first!

This Diophantine Equation may seem a bit difficult to handle and will force you to try various techniques like making modulo 7, modulo p, modulo q as p and q are given as primes. But, let’s go through the basic techniques for handling it. So what is it? Checking the parity of p and q in the given equation.
Som check that if both p and q are odd primes, then the LHS will be even but the RHS will be odd, which is a contradiction.  Hence the only way it can happen that one of them must be even i.e. 2.
Now, things seem to be under control. We have two cases, p = 2 and q = 2. For p = 2, we get the equation $q^3 – 14q^2 = -343$. This implies that q must divide $343 = 7^3$. Hence q can be only 7. This gives rise to the solution (2,7). The next hint offers the other case.
For  q = 2. we get $43p^3 – 29p + 9 = 0$. How to solve this? Clearly apply the same idea. Observe that if p = odd the LHS will be odd which can’t be 0. Hence, p must be 2, but it doesn’t satisfy the equation. The only solution is (2,7).

# Connected Program at Cheenta

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

# Similar Problems

## Coin Toss Problem | AMC 10A, 2017| Problem No 18

Try this beautiful Problem on Probability from AMC 10A, 2017. Problem-18, You may use sequential hints to solve the problem.

## GCF & Rectangle | AMC 10A, 2016| Problem No 19

Try this beautiful Problem on Geometry on Rectangle from AMC 10A, 2010. Problem-19. You may use sequential hints to solve the problem.

## Fly trapped inside cubical box | AMC 10A, 2010| Problem No 20

Try this beautiful Problem on Geometry on cube from AMC 10A, 2010. Problem-20. You may use sequential hints to solve the problem.

## Measure of angle | AMC 10A, 2019| Problem No 13

Try this beautiful Problem on Geometry from AMC 10A, 2019.Problem-13. You may use sequential hints to solve the problem.

## Sum of Sides of Triangle | PRMO-2018 | Problem No-17

Try this beautiful Problem on Geometry from PRMO -2018.You may use sequential hints to solve the problem.

## Recursion Problem | AMC 10A, 2019| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-15, You may use sequential hints to solve the problem.

## Roots of Polynomial | AMC 10A, 2019| Problem No 24

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-24, You may use sequential hints to solve the problem.

## Set of Fractions | AMC 10A, 2015| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2015. Problem-15. You may use sequential hints to solve the problem.

## Indian Olympiad Qualifier in Mathematics – IOQM

Due to COVID 19 Pandemic, the Maths Olympiad stages in India has changed. Here is the announcement published by HBCSE: Important Announcement [Updated:14-Sept-2020]The national Olympiad programme in mathematics culminating in the International Mathematical Olympiad...

## Positive Integers and Quadrilateral | AMC 10A 2015 | Sum 24

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2015. Problem-24. You may use sequential hints to solve the problem.