How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Probability of divisors | AIME I, 2010 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2010 based on Probability of divisors.

Probability of divisors - AIME I, 2010

Ramesh lists all the positive divisors of \(2010^{2}\), she then randomly selects two distinct divisors from this list. Let p be the probability that exactly one of the selected divisors is a perfect square. The probability p can be expressed in the form \(\frac{m}{n}\), where m and n are relatively prime positive integers. Find m+n.

  • is 107
  • is 250
  • is 840
  • cannot be determined from the given information

Key Concepts



Number Theory

Check the Answer

Answer: is 107.

AIME I, 2010, Question 1

Elementary Number Theory by Sierpinsky

Try with Hints

First hint


Second Hint

\((2+1)^{4}\) divisors, \(2^{4}\) are squares

Final Step

probability is \(\frac{2.2^{4}.(3^{4}-2^{4})}{3^{4}(3^{4}-1)}=\frac{26}{81}\) implies m+n=107

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.