Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

TIFR 2013 problem 21 | No fixed point Homeomorphism

Try this problem from TIFR 2013 problem 21 based on no fixed homeomorphism.

Question: TIFR 2013 problem 21

True/False?

Every homeomorphism of the 2-sphere to itself has a fixed point.

Hint:

\(z= -z\) implies \(z=0\)

Discussion:

2-sphere means \( S^2=\left \{(x,y,z)\in\mathbb{R}^3 | x^2+y^2+z^2=1 \right \} \).

i.e, \( S^2=\left \{v\in\mathbb{R}^3 | ||v||=1 \right \} \).

\(||.||\) denotes the usual 2-norm (Euclidean norm).

Let us try \(f:S^2\to S^2\) defined by \(f(v)=-v\) for all \(v\in\mathbb{R}^3\).

The only vector in \(\mathbb{R}^3\) that is fixed by \(f\) is 0, which doesn't lie in \(S^2\).

We hope \(f\) turns out to be a homeomorphism.

\(||f(v)-f(w)||=||-v+w||=||v-w||\). So f is in fact Lipshitz function, so continuous.

\(f(f(v)=v\) for all \(v\in\mathbb{R}^3\). Therefore, \(f\) itself is inverse of \(f\). Which proves that \(f\) is bijective (since, inverse function exists) and homeomorphism (inverse is also continuous).

 

Some useful links:

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com