Understand the problem

The multiplicative group \(F^*_7\) is isomorphic to a subgroup of the multiplicative group \(F^*_{31}\). 

Source of the problem
TIFR GS 2018 Part A Problem 17
Topic
Abstract Algebra
Difficulty Level
Medium
Suggested Book
Dummit and Foote

Start with hints

Do you really need a hint? Try it first!

We will write them as (Z/7Z)* and (Z/31Z)* respectively instead of the notations used.
  • Observe that (Z/7Z)* has order 6 and (Z/31Z)* has order 30.So there is a possibility that (Z/7Z)* is a subgroup of (Z/31Z)* by Lagrange’s Theorem.
  • So we need to go into the structure of the groups to solve this problem.Hence we proceed!
  • Let us investigate the group (Z/7Z)*.It consists of {1,2,3,4,5,6 mod 7}.Observe that 3 mod 7 generates the group.
  • So naturally the next question is that whether (Z/31Z)* rather is there any general result?
  • In fact the following theorem is true and describes the cyclicity (Z/nZ)* to some extent.
  • Theorem: If p is a prime then (Z/pZ)* is cyclic. (Check!) {Check the bonus question for the complete characterization of cyclicity of (Z/nZ)* done by Gauss.}
  • So (Z/7Z)* and (Z/31Z)* are cyclic groups of order 6 and 30 respectively with generators say A and B respectively.
  • Now take the element \(B^5\).The following Lemma describes its order.
  • Lemma: If g is the generator of the cyclic group of order n. Then \(g^k\_ has order n/gcd(n,k).(Check !)
  • So \(B^5\) has order 6 and hence it is isomorphic to (Z/7Z)*.
  • Hence the answer is True.
Bonus Problem:
  • Theorem: The group (Z/nZ)* is cyclic if and only if n is \(1, 2, 4, p^k or 2.p^k\), where p is an odd prime and k > 0. This was first proved by Gauss. (Wow!)
Solve and Salvage if Possible.

Watch the video

Connected Program at Cheenta

College Mathematics Program

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.

Similar Problems

Supremum and Infimum: IIT JAM 2018 Problem 11

This is a problem which appeared in IIT JAM 2018. So this problem requires basic concepets of supremum and infimum from real analysis part.

Sequences & Subsequences : IIT 2018 Problem 10

This problem appeared in IIT JAM 2018 whch pricisely reqiures concepts of sequences and subsequences from mathematical field real analysis

Cyclic Groups & Subgroups : IIT 2018 Problem 1

This is an application abstract algebra question that appeared in IIT JAM 2018. The concept required is the cyclic groups , subgroups and proper subgroups.

Acute angles between surfaces: IIT JAM 2018 Qn 6

This is an application analysis question that appeared in IIT JAM 2018. The concept required is the multivarible calculus and vector analysis.

Finding Tangent plane: IIT JAM 2018 problem 5

What are we learning?Gradient is one of the key concepts of vector calculus. We will use this problem from IIT JAM 2018 will use these ideasUnderstand the problemThe tangent plane to the surface $latex z= \sqrt{x^2+3y^2}$ at (1,1,2) is given by \(x-3y+z=0\)...

An excursion in Linear Algebra

Did you know Einstein badly needed linear algebra? We will begin from scratch in this open seminar and master useful tools on the way. The open seminar on linear algebra is coming up on 14th November 2019, (8 PM IST).

Linear Algebra total recall (Open Seminar)

Open Seminar on linear algebra. A review of all major ideas. Even if you have little or no knowledge about Linear Algebra, you may join. Register now.

4 questions from Sylow’s theorem: Qn 4

I have prepared some common questions ok application of Sylow’s theorem with higher difficulty level. It is most propably cover all possible combination.

4 questions from Sylow’s theorem: Qn 3

I have prepared some common questions ok application of Sylow’s theorem with higher difficulty level. It is most propably cover all possible combination.

4 questions from Sylow’s theorem: Qn 2

I have prepared some common questions ok application of Sylow’s theorem with higher difficulty level. It is most propably cover all possible combination.