INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

March 14, 2020

Minimal Polynomial of a Matrix | TIFR GS-2018 (Part B)

Try this beautiful problem from TIFR GS 2018 (Part B) based on Minimal Polynomial of a Matrix. This problem requires knowledge of linear algebra.

Minimal Polynomial of a matrix - TIFR GS- Part B (Problem 10)


The minimal polynomial of $\begin{pmatrix} 2 &1& 0&0 \\ 0 &2&0&0 \\ 0&0&2&0\\ 0&0&1&5\end{pmatrix}$ is

  • $(x-2)(x-5)$
  • $(x-2)^2(x-5)$
  • $(x-2)^3(x-5)$
  • None of these

Key Concepts


Linear Algebra

Matrix / Vector Space

Characteristic Polynomial

Check the Answer


Answer: $(x-2)^2(x-5)$

TIFR GS -2018 (Part- B) | Problem No 10

Graduate Texts in Mathematics : Springer-Verlag

Try with Hints


Some Definitions and Results Needed :

  1. Monic Polynomial : A polynomial is said to be monic if the coefficient of the highest degree term is 1.
  2. Characteristic Polynomial of a matrix : Let $A$ be a square matrix of order $n$ then the polynomial $|A-\lambda I_n|$ is called its characteristic polynomial and $|A-\lambda I_n|=0$ is called the characteristic equation. [$I_n$ is the identity matrix of order $n$]
  3. Cayley - Hamilton Theorem : If $p(\lambda)$ is the characteristic polynomial of an $n\times n$ matrix $A$ over a field $F$, then the matrix $A$ satisfies the equation $p(x)=0$, i.e., $p(A)=0$. In other words, every square matrix satisfies its own characteristic equation.
  4. Minimal Polynomial : The monic polynomial of lowest degree satisfied by a square matrix $A$ is called its minimal polynomial
  5. Let $p(\lambda)$ and $m(\lambda)$ be the characteristic and minimal polynomials of a square matrix $A$ of order $n$ respectively. Then either both $p(\lambda)$ and $m(\lambda)$ are of degree $n$ or $m(\lambda)$ is a factor of $p(\lambda)$ .
  6. Minimal polynomial is unique.

So all the ingredients you need to cook the problem are given... Can you make it delicious ?

To find the Characteristic equation of the given matrix :

Let $A= \begin{pmatrix} 2 &1& 0&0 \\ 0 &2&0&0 \\ 0&0&2&0\\ 0&0&1&5\end{pmatrix} $

Then, $|A-\lambda I_4|= \begin{vmatrix} 2-\lambda &1& 0&0 \\ 0 &2-\lambda &0&0 \\ 0&0&2-\lambda &0\\ 0&0&1&5-\lambda \end{vmatrix} $

$\quad = (2-\lambda)^3(5-\lambda) = p(\lambda) $ [say]

then, the characteristic equation of $A$ is $p(x)=(x-2)^3(x-5)=0$

Then By Cayley Hamilton Theorem $(A-2I_4)^2(A-5I_4)=O_{4 \times 4}$ [$O_{4 \times 4}$ is the NULL MATRIX of order $4$]

As minimal polynomial is unique then if minimal polynomial is a polynomial of degree $4$ it is same as the characteristic polynomial by Property 5 in the first hint and if minimal polynomial is less than degree $4$ then it is a factor of characteristic polynomial.

all the factors of characteristic polynomial are :

$p_1(x)=(x-2)(x-5),\quad p_2(x)=(x-2)^2(x-5),\\ \text{ and } p(x)=(x-2)^3(x-5)$

Lets Find $p_1(A)$ i.e., $(A-2I_4)(A-5I_4)$ :

$(A-2I_4)(A-5I_4)=\begin{pmatrix} 0 &1& 0&0 \\ 0 &0&0&0 \\ 0&0&0&0\\ 0&0&1&3\end{pmatrix} \times \begin{pmatrix} -3 &1& 0&0 \\ 0 &-3&0&0 \\ 0&0&-3&0\\ 0&0&1&0\end{pmatrix}$

$\quad\quad= \begin{pmatrix} 0 &-3& 0&0 \\ 0 &0&0&0 \\ 0&0&0&0\\ 0&0&0&0\end{pmatrix} \ne O_{4 \times 4}$

Now, $p_2(A)$ i.e., $(A-2I_4)^2(A-5I_4)$ :

$(A-2I_4)^2(A-5I)=\begin{pmatrix} 2 &1& 0&0 \\ 0 &2&0&0 \\ 0&0&2&0\\ 0&0&1&5\end{pmatrix}^2 \times \begin{pmatrix} -3 &1& 0&0 \\ 0 &-3&0&0 \\ 0&0&-3&0\\ 0&0&1&0\end{pmatrix}$

$\quad\quad= \begin{pmatrix} 0 &0& 0&0 \\ 0 &0&0&0 \\ 0&0&0&0\\ 0&0&3&9\end{pmatrix} \times \begin{pmatrix} -3 &1& 0&0 \\ 0 &-3&0&0 \\ 0&0&-3&0\\ 0&0&1&0\end{pmatrix} = O_{4 \times 4} $

Therefore the lowest degree monic polynomial satisfied by $A$ is $(x-2)^2(x-5)$.

Hence the minimal polynomial is $(x-2)^2(x-5)$

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com