How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# What are we learning ?

[/et_pb_text][et_pb_text _builder_version="4.0.9" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Competency in Focus: Menalaus's Theorem This problem from American Mathematics contest (AMC 8, 2019) will help us to learn more about Menalaus's Theorem.

# Next understand the problem

[/et_pb_text][et_pb_text _builder_version="4.0.9" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]In triangle ???, point ? divides side AC so that ?? ∶ ?? = 1 ∶ 2. Let ? be the midpoint of BD and ? be the point of intersection of line BC and line AE. Given that the area of ∆??? is 360, what is the area of ∆????[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.0"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.0.9" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" _builder_version="4.0.9" open="off"]American Mathematical Contest 2019, AMC 8 Problem 25

[/et_pb_accordion_item][et_pb_accordion_item title="Key Competency" open="on" _builder_version="4.0.9"]Menalaus's Theorem:   Given a triangle ABC, and a transversal line that crosses BC, AC, and AB at points D, E, and F respectively, with D, E, and F distinct from A, B, and C, then

$$\displaystyle {\frac {AF}{FB}\times \frac {BD}{DC}\times \frac {CE}{EA}=-1.}$$

[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.0.9" open="off"]

7/10[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.0.9" open="off"]Challenges and Thrills in Pre College Mathematics Excursion Of Mathematics

# Similar Problems

[/et_pb_text][et_pb_post_nav in_same_term="off" _builder_version="4.0.9"][/et_pb_post_nav][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]