Try this beautiful problem from PRMO, 2019 based on Maximum area

Maximum area | PRMO-2019 | Problem-23

Let $\mathrm{ABCD}$ be a convex cyclic quadrilateral. Suppose $\mathrm{P}$ is a point in the plane of the quadrilateral such that the sum of its distances from the vertices of ABCD is the least. If ${\mathrm{PA}, \mathrm{PB}, \mathrm{PC}, \mathrm{PD}}={3,4,6,8} .$ What is the maximum possible area of ABCD?

  • $20$
  • $55$
  • $13$
  • \(23\)

Key Concepts




Check the Answer

But try the problem first…


Suggested Reading

PRMO-2019, Problem 23

Pre College Mathematics

Try with Hints

First hint

problem figure

Given that $\mathrm{PA}=\mathrm{a}, \mathrm{PB}=\mathrm{b}, \mathrm{PC}=\mathrm{c}, \mathrm{PD}=\mathrm{d}$
Now from the above picture area of quadrilateral ABCD

Second Hint

finding the maximum area

Therefore area $\Delta=\frac{1}{2} \mathrm{ab} \sin \mathrm{x}+\frac{1}{2} \mathrm{bc} \sin \mathrm{y}+\frac{1}{2} \mathrm{cd} \sin \mathrm{z}+\frac{1}{2}$ da $\sin \mathrm{w}$
$\Delta_{\max }$ when $x=y=z=w=90^{\circ}$
$\Delta_{\max }=\frac{1}{2}(\mathrm{a}+\mathrm{c})(\mathrm{b}+\mathrm{d})$
Now ac $=$ bd (cyclic quadrilateral) As $(a, b, c, d)=(3,4,6,8)$
$\Rightarrow{(a, c)(b, d)}={(3,8)(4,6)}$

Final Step

So $\Delta_{\max }=\frac{1}{2} \times 11 \times 10=55$

Subscribe to Cheenta at Youtube