INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

May 14, 2020

Limit Problem | ISI-B.stat | Objective Problem 694

Try this beautiful problem on Limit, useful for ISI B.Stat Entrance.

Limit Problem | ISI B.Stat Entrance | Problem 694


Let \(a_1 = 1\) and \(a_n = n(a_{n-1} + 1)\) for \(n = 2, 3, ….\) Define \(P_n = (1 +1/a_1)(1 + 1/a_2)….(1 + 1/a_n)\). Then \(\lim\limits_{x \to \infty} {P_n}\)?

  • (a) \(1+e\)
  • (b) \(e\)
  • (c) \(1\)
  • (d) \(\infty\)

Key Concepts


Calculus

Limit

Trigonometry

Check the Answer


Answer: (b)\(e\)

TOMATO, Problem 709

Challenges and Thrills in Pre College Mathematics

Try with Hints


Given that \(P_n = (1 +1/a_1)(1 + 1/a_2)….(1 + 1/a_n)\)

Therefore \(P_n=\frac{a_1 +1}{a_1}.\frac{a_2 +1}{a_2}.\frac{a_3 +1}{a_3}.....\frac{a_n +1}{a_n}\)

Now \(a_n = n(a_{n-1} + 1)\)

Put \(n=2\), we will get \(a_1+1=\frac{a_2}{2}\)

\(a_2+1=\frac{a_3}{3}\)...................

.............................

..............................

\(a_n+1=\frac{a_n}{n}\)

Therefore \(P_n=\frac{a_1 +1}{a_1}.\frac{a_2 +1}{a_2}.\frac{a_3 +1}{a_3}.....\frac{a_n +1}{a_n}\)

\(\Rightarrow {P_n}= \frac{a_2}{2a_1}.\frac{a_3}{3a_2}.\frac{a_4}{4a_3}........\frac{a_{n+1}}{(n+1).{a_n}}\)

\(\Rightarrow {P_n}=\frac{a_{n+1}}{{a_1}\{2.3.4...........(n+1)\}}\)

\(\Rightarrow {P_n}=\frac{a_{n+1}}{\{1.2.3.4...........(n+1)\}}\) (as \(a_1=1\))

\(\Rightarrow {P_n}=\frac{a_{n+1}}{(n+1)!}\)

\(\Rightarrow {P_n}=\frac{(n+1)(a_n +1)}{(n+1)!}\)

\(\Rightarrow {P_n}=\frac{(a_n +1)}{n!}\)

\(\Rightarrow {P_n}=\frac{a_n}{n!} +\frac{1}{n!}\)

\(\Rightarrow {P_n}=\frac{n(a_{n-1}+1)}{n!}+\frac{1}{n!}\)

\(\Rightarrow {P_n}=\frac{a_{n-1}+1}{(n-1)!}+\frac{1}{n!}\)

\(\Rightarrow {P_n}=\frac{a_{n-1}}{(n-1)!}+\frac{1}{(n-1)!}+\frac{1}{n!}\)

\(\Rightarrow {P_n}=\frac{a_2}{2!}+\frac{1}{2!}+\frac{1}{3!}+.......+\frac{1}{n!}\)

\(\Rightarrow {P_n}=\frac{2(1+1)}{2!}+\frac{1}{2!}+....+\frac{1}{n!}\)

\(\Rightarrow {P_n}=1+\frac{1}{1!}+.....+\frac{1}{n!}\)

Can you now finish the problem ..........

Now we have to find out \(\lim\limits_{x \to \infty} {P_n}\)

we know that \(e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+..........+\infty\)

So,\(e^1=1+\frac{1}{1!}+\frac{1^2}{2!}+..........+\infty\)

\(\lim\limits_{x \to \infty} {P_n}\)=\(1+\frac{1}{1!}+\frac{1^2}{2!}+..........+\infty\)

\(\lim\limits_{x \to \infty} {P_n}\)=\(e\)

Therefore option (b) is correct.....

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter