How Cheenta works to ensure student success?
Explore the Back-Story

Limit of a Sequence | IIT JAM 2018 | Problem 2

Try this beautiful problem from IIT JAM 2018 which requires knowledge of Real Analysis (Limit of a Sequence).

Limit of a Sequence - IIT JAM 2018 (Problem 2)


Let $a_n=\frac{b_{n+1}}{b_n}$ where $b_1=1, b_2=1$ and $b_{n+2}=b_n+b_{n+1}$ , Then $\lim\limits_{n \to \infty} a_n$ is

  • $\frac{1-\sqrt5}{2}$
  • $\frac{1+\sqrt5}{2}$
  • $\frac{1+\sqrt3}{2}$
  • $\frac{1-\sqrt3}{2}$

Key Concepts


Real Analysis

Sequence of Reals

Limit of a Sequence

Check the Answer


Answer: $\frac{1+\sqrt5}{2}$

IIT JAM 2018 (Problem 2)

AdvancedĀ Calculus by Patrick Fitzpatrick

Try with Hints


Given that, $a_n=\frac{b_{n+1}}{b_n}$

$\Rightarrow \lim\limits_{n \to \infty} a_n = \lim\limits_{n \to \infty} \frac{b_{n+1}}{b_n}= \mathcal{L} $ (say)

Now we know that , $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} a_{n+1} $

$\Rightarrow \mathcal{L}=\lim\limits_{n \to \infty} a_{n+1}$

Can you find an equation on $\mathcal{L}$ from which the value of $\mathcal{L}$ can be obtained.

$\mathcal{L}= \lim\limits_{n \to \infty } a_{n+1}$

$= \lim\limits_{n \to \infty} \frac{b_{n+2}}{b_{n+2}}$

$=\lim\limits_{n\to \infty} \frac{b_{n+1}+b_n}{b_{n+1}}$ [By the given recurrence relation]

$=\lim\limits_{n\to \infty} \left(1+\frac{b_n}{b_{n+1}}\right)$

$=1+\lim\limits_{n \to \infty} \frac{b_n}{b_{n+1}}$

$=1+\frac{1}{\lim\limits_{n\to\infty}\frac{b_{n+1}}{b_n}}$

$=1+\frac{1}{\mathcal{L}}$

Now the value of $\mathcal{L}$ can be easily obtained

i.e., $\mathcal{L}=1+\frac{1}{\mathcal{L}}$

$\Rightarrow \mathcal{L}^2-\mathcal{L}-1=0$

$\Rightarrow \mathcal{L}=\frac{1\pm \sqrt{5}}{2}$

$\Rightarrow \mathcal{L}=\frac{1+\sqrt{5}}{2}$ [Since $a_n>0$] [ANS]

Subscribe to Cheenta at Youtube


Try this beautiful problem from IIT JAM 2018 which requires knowledge of Real Analysis (Limit of a Sequence).

Limit of a Sequence - IIT JAM 2018 (Problem 2)


Let $a_n=\frac{b_{n+1}}{b_n}$ where $b_1=1, b_2=1$ and $b_{n+2}=b_n+b_{n+1}$ , Then $\lim\limits_{n \to \infty} a_n$ is

  • $\frac{1-\sqrt5}{2}$
  • $\frac{1+\sqrt5}{2}$
  • $\frac{1+\sqrt3}{2}$
  • $\frac{1-\sqrt3}{2}$

Key Concepts


Real Analysis

Sequence of Reals

Limit of a Sequence

Check the Answer


Answer: $\frac{1+\sqrt5}{2}$

IIT JAM 2018 (Problem 2)

AdvancedĀ Calculus by Patrick Fitzpatrick

Try with Hints


Given that, $a_n=\frac{b_{n+1}}{b_n}$

$\Rightarrow \lim\limits_{n \to \infty} a_n = \lim\limits_{n \to \infty} \frac{b_{n+1}}{b_n}= \mathcal{L} $ (say)

Now we know that , $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} a_{n+1} $

$\Rightarrow \mathcal{L}=\lim\limits_{n \to \infty} a_{n+1}$

Can you find an equation on $\mathcal{L}$ from which the value of $\mathcal{L}$ can be obtained.

$\mathcal{L}= \lim\limits_{n \to \infty } a_{n+1}$

$= \lim\limits_{n \to \infty} \frac{b_{n+2}}{b_{n+2}}$

$=\lim\limits_{n\to \infty} \frac{b_{n+1}+b_n}{b_{n+1}}$ [By the given recurrence relation]

$=\lim\limits_{n\to \infty} \left(1+\frac{b_n}{b_{n+1}}\right)$

$=1+\lim\limits_{n \to \infty} \frac{b_n}{b_{n+1}}$

$=1+\frac{1}{\lim\limits_{n\to\infty}\frac{b_{n+1}}{b_n}}$

$=1+\frac{1}{\mathcal{L}}$

Now the value of $\mathcal{L}$ can be easily obtained

i.e., $\mathcal{L}=1+\frac{1}{\mathcal{L}}$

$\Rightarrow \mathcal{L}^2-\mathcal{L}-1=0$

$\Rightarrow \mathcal{L}=\frac{1\pm \sqrt{5}}{2}$

$\Rightarrow \mathcal{L}=\frac{1+\sqrt{5}}{2}$ [Since $a_n>0$] [ANS]

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
magic-wandrockethighlight