What is the NO-SHORTCUT approach for learning great Mathematics?
Learn More

June 23, 2020

Length of side of Triangle | PRMO II 2019 | Question 28

Try this beautiful problem from the Pre-RMO II, 2019, Question 28, based on Length of side of triangle.

Length of side of triangle - Problem 28

In a triangle ABC, it is known that \(\angle\)A=100\(^\circ\) and AB=AC. The internal angle bisector BD has length 20 units. Find the length of BC to the nearest integer, given that sin 10\(^\circ\)=0.174.

  • is 107
  • is 27
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

Answer: is 27.

PRMO II, 2019, Question 28

Higher Algebra by Hall and Knight

Try with Hints

First hint

given, BD=20 units



In \(\Delta\)ABD


or, \(\frac{BD}{sin100^\circ}=\frac{AD}{sin20^\circ}\)

or, 20=\(\frac{AD}{2sin10^\circ}\) or, AD=40sin10\(^\circ\)=6.96

finding the length of the side of triangle

Second Hint

In \(\Delta\)BDC


or, CD=\(\frac{20}{2cos20^\circ}\)=\(\frac{20}{2 \times 0.9394}\)=10.65

Final Step

So, AD+CD=AC=AB=17.6

since BD is angle bisector


or, BC=\(\frac{AB \times CD}{AD}\)=\(\frac{17.6 \times 10.65}{6.96}\)


Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.