INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

June 23, 2020

Length of side of Triangle | PRMO II 2019 | Question 28

Try this beautiful problem from the Pre-RMO II, 2019, Question 28, based on Length of side of triangle.

Length of side of triangle - Problem 28


In a triangle ABC, it is known that \(\angle\)A=100\(^\circ\) and AB=AC. The internal angle bisector BD has length 20 units. Find the length of BC to the nearest integer, given that sin 10\(^\circ\)=0.174.

  • is 107
  • is 27
  • is 840
  • cannot be determined from the given information

Key Concepts


Equation

Algebra

Integers

Check the Answer


Answer: is 27.

PRMO II, 2019, Question 28

Higher Algebra by Hall and Knight

Try with Hints


First hint

given, BD=20 units

\(\angle\)A=100\(^\circ\)

AB=AC

In \(\Delta\)ABD

\(\frac{BD}{sinA}=\frac{AD}{sin20^\circ}\)

or, \(\frac{BD}{sin100^\circ}=\frac{AD}{sin20^\circ}\)

or, 20=\(\frac{AD}{2sin10^\circ}\) or, AD=40sin10\(^\circ\)=6.96

finding the length of the side of triangle

Second Hint

In \(\Delta\)BDC

\(\frac{BD}{sin40^\circ}=\frac{BC}{sin120^\circ}=\frac{CD}{sin20^\circ}\)

or, CD=\(\frac{20}{2cos20^\circ}\)=\(\frac{20}{2 \times 0.9394}\)=10.65

Final Step

So, AD+CD=AC=AB=17.6

since BD is angle bisector

\(\frac{BC}{AB}=\frac{CD}{AD}\)

or, BC=\(\frac{AB \times CD}{AD}\)=\(\frac{17.6 \times 10.65}{6.96}\)

=26.98=27.

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter