How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Length of side of Triangle | PRMO II 2019 | Question 28

Try this beautiful problem from the Pre-RMO II, 2019, Question 28, based on Length of side of triangle.

Length of side of triangle - Problem 28

In a triangle ABC, it is known that \(\angle\)A=100\(^\circ\) and AB=AC. The internal angle bisector BD has length 20 units. Find the length of BC to the nearest integer, given that sin 10\(^\circ\)=0.174.

  • is 107
  • is 27
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

Answer: is 27.

PRMO II, 2019, Question 28

Higher Algebra by Hall and Knight

Try with Hints

First hint

given, BD=20 units



In \(\Delta\)ABD


or, \(\frac{BD}{sin100^\circ}=\frac{AD}{sin20^\circ}\)

or, 20=\(\frac{AD}{2sin10^\circ}\) or, AD=40sin10\(^\circ\)=6.96

finding the length of the side of triangle

Second Hint

In \(\Delta\)BDC


or, CD=\(\frac{20}{2cos20^\circ}\)=\(\frac{20}{2 \times 0.9394}\)=10.65

Final Step

So, AD+CD=AC=AB=17.6

since BD is angle bisector


or, BC=\(\frac{AB \times CD}{AD}\)=\(\frac{17.6 \times 10.65}{6.96}\)


Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.