How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Largest possible value | AMC-10A, 2004 | Problem 15

Try this beautiful problem from Number system: largest possible value

Largest Possible Value - AMC-10A, 2004- Problem 15

Given that \( -4 \leq x \leq -2\) and \(2 \leq y \leq 4\), what is the largest possible value of \(\frac{x+y}{2}\)

  • \(\frac {-1}{2}\)
  • \(\frac{1}{6}\)
  • \(\frac{1}{2}\)
  • \(\frac{1}{4}\)
  • \(\frac{1}{9}\)

Key Concepts

Number system



Check the Answer

Answer: \(\frac{1}{2}\)

AMC-10A (2003) Problem 15

Pre College Mathematics

Try with Hints

The given expression is \(\frac{x+y}{x}=1+\frac{y}{x}\)

Now \(-4 \leq x \leq -2\) and \(2 \leq y \leq 4\) so we can say that \(\frac{y}{x} \leq 0\)

can you finish the problem........

Therefore, the expression \(1+\frac{y}x\) will be maximized when \(\frac{y}{x}\) is minimized, which occurs when \(|x|\) is the largest and \(|y|\) is the smallest.

can you finish the problem........

Therefore in the region \((-4,2)\) , \(\frac{x+y}{x}=1-\frac{1}{2}=\frac{1}{2}\)

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.