Get inspired by the success stories of our students in IIT JAM 2021. Learn More 

Kernel of a linear transformation | ISI MStat 2016 Problem 4 | PSB Sample

This is a beautiful problem from ISI MStat 2016 Problem 4 PSB (sample) based on Vector space. It uses several concepts to solve it. We provide a detailed solution with prerequisites mentioned explicitly.

Problem- ISI MStat 2016 Problem 4

For each \(c \in \mathbb{R},\) define a function \(T_{c}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}\) by
\(T_{c}\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\left((1+c) x_{1}, x_{2}+c x_{3}, x_{3}+c x_{2},(1+c) x_{4}\right) \)
For every \(c \in \mathbb{R},\) find the dimension of the null space of \(T_{c}\).

Prerequisites

  • kernel or Null space of a linear transformation
  • Dimension
  • Spanning & Linearly Independent vectors of a vector space

Solution

Here we have to find the Kernel or null space of \(T_{c} \) i.e { \(\vec{x}\) : \( T_{c} ( \vec{x} )=\vec{0} \) } .

\( T_{c}\) is defined as \(T_{c}\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\left((1+c) x_{1}, x_{2}+c x_{3}, x_{3}+c x_{2},(1+c) x_{4}\right) \)

So, \( T_{c} ( \vec{x} )=\vec{0} \Rightarrow ((1+c) x_{1}, x_{2}+c x_{3}, x_{3}+c x_{2},(1+c) x_{4}) = (0,0,0,0) \) , which gives

(i) \( (1+c)x_{1}=0 \Rightarrow x_{1} =0\) if \( c \ne -1\)

(ii)\( (1+c)x_{4}=0 \Rightarrow x_{4} =0\) if \( c \ne -1\)

(iii) \(x_{2}+c x_{3} =0 \Rightarrow x_{2}=-c x_{3}\)

(iv) \( x_{3}+c x_{2} \Rightarrow x_{3}=-c x_{2} \)

(iii) & (iv)\( \Rightarrow x_{2}=-c x_{3}=c^2 x_{2} \Rightarrow x_{2} (1-c^2) =0 \Rightarrow x_{2}=0 \) if \( c \ne \pm 1 \)

And if \( x_{2}=0\) then \( x_{3}= 0 \) if c \(\ne 0 \) .

Now for different values of c and using (i),(ii),(iii) and (iv) we will find the Null space \( (N(T_{c}) ) \) as follows ,

\( N(T_{c}) \) = \( \begin{cases} (x_{1} ,x_{2},x_{2} , x_{4}) & , c=-1 , and { x_{1} ,x_{2}, , x_{4}} \in \mathbb{R} \\ (0,0,0, 0) & c=0 \\ (0,x_{2} ,-x_{2} , 0) &, c=1 , and { x_{2}} \in \mathbb{R} \\ (0,0,0,0) & , c \ne 0,-1,1 \end{cases} \)

Therefore for different values of c we will get different dimension of \( N(T_{c}) \) as follows ,

If c=-1 then \( N(T_{c}) = (x_{1} ,x_{2},x_{2} , x_{4} ) = x_{1}(1,0,0,0) + x_{2} (0,1,1,0) + x_{4}(0,0,0,1) \) . Hence the vectors {(1,0,0,0) , (0,1,1,0) ,(0,0,0,1) } spans \( N(T_{c}) \) and they are Linearly Independent . Thus on this case dimension of null space \( N(T_{c}) \) is 3 .

If c=0 then \( N(T_{c}) =(0,0,0 , 0) \) . Thus on this case dimension of null space \( N(T_{c}) \) is 0.

If c=1 then \( N(T_{c}) =(0,x_{2} ,-x_{2} , 0) = x_{2} (0,1,-1,0) \) .Hence the vectors { (0,1,-1,0) } spans \( N(T_{c}) \) and they are Linearly Independent . Thus on this case dimension of null space \( N(T_{c}) \) is 1 .

Finally if \(c \ne -1,0,1 \) then \( N(T_{c}) =(0,0,0,0) \) . Thus on this case dimension of null space \( N(T_{c}) \) is 0.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com