This is a very beautiful sample problem from ISI MStat PSB 2014 Problem 2 based on the use and properties of a function . Let’s give it a try !!

Problem– ISI MStat PSB 2014 Problem 2


Let \( a_{1}<a_{2}<\cdots<a_{m}\) and \(b_{1}<b_{2}<\cdots<b_{n}\) be real numbers such
that \(\sum_{i=1}^{m}\left|a_{i}-x\right|=\sum_{j=1}^{n}\left|b_{j}-x\right| \text { for all } x \in \mathbb{R} \)
Show that \(m=n\) and \(a_{j}=b_{j}\) for \(1 \leq j \leq n\)

Prerequisites


Differentiability

Mod function

continuity

Solution :

Let , \(\sum_{i=1}^{m}\left|a_{i}-x\right|=\sum_{j=1}^{n}\left|b_{j}-x\right|=f(x) \text { for all } x \in \mathbb{R} \)

Then , \( f(x)=\sum_{i=1}^{m}\left|a_{i}-x\right| \) is not differentiable at \( x=a_1,a_2, \cdots , a_m \) —(1)

As we know the function \(|x-a_i|\) is not differentiable at \(x=a_i\) .

Again we have , \( f(x) = \sum_{j=1}^{n}\left|b_{j}-x\right| \) it also not differentiable at \( x= b_1,b_2, \cdots , b_n \) —-(2)

Hence from (1) we get f has m non-differentiable points and from (2) we get f has n non-differentiable points , which is possible only when m and n are equal .

And also the points where f is not differentiable must be same in both (1) and (2) .

As we have the restriction that \( a_{1}<a_{2}<\cdots<a_{m}\) and \(b_{1}<b_{2}<\cdots<b_{n}\) .

So , we have \(a_{j}=b_{j}\) for \(1 \leq j \leq n\) .


Food For Thought

\(a<b \in \mathbb{R} .\) Let \(f:[a, b] \rightarrow[a, b]\) be a continuous and differentiable on (a,b) . Suppose that \(\left|f^{\prime}(x)\right| \leq \alpha<1\) for all \(x \in(a, b)\) for some \(\alpha .\) Then prove that there exists unique \(x \in[a, b]\) such that \(f(x)=x\)


ISI MStat PSB 2008 Problem 10
Outstanding Statistics Program with Applications

Outstanding Statistics Program with Applications

Subscribe to Cheenta at Youtube