Get inspired by the success stories of our students in IIT JAM MS, ISI MStat, CMI MSc Data Science. Learn More

Problems and Solutions from CMI Entrance 2022. Learn More

Content

[hide]

This is a very simple sample problem from ISI MStat PSB 2009 Problem 1. It is based on basic properties of Nilpotent Matrices and Skew-symmetric Matrices. Try it !

(a) Let \(A\) be an \(n \times n\) matrix such that \((I+A)^4=O\) where \(I\) denotes the identity matrix. Show that \(A\) is non-singular.

(b) Give an example of a non-zero \(2 \times 2\) real matrix \(A\) such that \( \vec{x'}A \vec{x}=0\) for all real vectors \(\vec{x}\).

Nilpotent Matrix

Eigenvalues

Skew-symmetric Matrix

The first part of the problem is quite easy,

It is given that for a \(n \times n\) matrix \(A\), we have \((I+A)^4=O\), so, \(I+A\) is a nilpotet matrix, right !

And we know that all the eigenvalues of a nilpotent matrix are \(0\). Hence all the eigenvalues of \(I+A\) are 0.

Now let \(\lambda_1, \lambda_2,......,\lambda_k\) be the eigenvalues of the matrix \(A\). So, the eigenvalues of the nilpotent matrix \(I+A\) are of form \(1+\lambda_k\) where, \(k=1,2.....,n\). Now since, \(1+\lambda_k=0\) which implies \(\lambda_k=-1\), for \(k=1,2,...,n\).

Since all the eigenvalues of \(A\) are non-zero, infact \(|A|=(-1)^n \). Hence our required propositon.

(b) Now this one is quite interesting,

If for any \(2\times 2\) matrix, the Quadratic form of that matrix with respect to a vector \(\vec{x}=(x_1,x_2)^T\) is of form,

\(a{x_1}^2+ bx_1x_2+cx_2x_1+d{x_2}^2\) where \(a,b,c\) and \(d\) are the elements of the matrix. Now if we equate that with \(0\), what condition should it impose on \(a, b, c\) and \(d\) !! I leave it as an exercise for you to complete it. Also Try to generalize it you will end up with a nice result.

Now, extending the first part of the question, \(A\) is invertible right !! So, can you prove that we can always get two vectors from \(\mathbb{R}^n\), say \(\vec{x}\) and \(\vec{y}\), such that the necessary and sufficient condition for the invertiblity of the matrix \(A+\vec{x}\vec{y'}\) is "** \(\vec{y'} A^{-1} \vec{x}\) must be different from \(1\)"** !!

This is a very important result for Statistics Students !! Keep thinking !!

Content

[hide]

This is a very simple sample problem from ISI MStat PSB 2009 Problem 1. It is based on basic properties of Nilpotent Matrices and Skew-symmetric Matrices. Try it !

(a) Let \(A\) be an \(n \times n\) matrix such that \((I+A)^4=O\) where \(I\) denotes the identity matrix. Show that \(A\) is non-singular.

(b) Give an example of a non-zero \(2 \times 2\) real matrix \(A\) such that \( \vec{x'}A \vec{x}=0\) for all real vectors \(\vec{x}\).

Nilpotent Matrix

Eigenvalues

Skew-symmetric Matrix

The first part of the problem is quite easy,

It is given that for a \(n \times n\) matrix \(A\), we have \((I+A)^4=O\), so, \(I+A\) is a nilpotet matrix, right !

And we know that all the eigenvalues of a nilpotent matrix are \(0\). Hence all the eigenvalues of \(I+A\) are 0.

Now let \(\lambda_1, \lambda_2,......,\lambda_k\) be the eigenvalues of the matrix \(A\). So, the eigenvalues of the nilpotent matrix \(I+A\) are of form \(1+\lambda_k\) where, \(k=1,2.....,n\). Now since, \(1+\lambda_k=0\) which implies \(\lambda_k=-1\), for \(k=1,2,...,n\).

Since all the eigenvalues of \(A\) are non-zero, infact \(|A|=(-1)^n \). Hence our required propositon.

(b) Now this one is quite interesting,

If for any \(2\times 2\) matrix, the Quadratic form of that matrix with respect to a vector \(\vec{x}=(x_1,x_2)^T\) is of form,

\(a{x_1}^2+ bx_1x_2+cx_2x_1+d{x_2}^2\) where \(a,b,c\) and \(d\) are the elements of the matrix. Now if we equate that with \(0\), what condition should it impose on \(a, b, c\) and \(d\) !! I leave it as an exercise for you to complete it. Also Try to generalize it you will end up with a nice result.

Now, extending the first part of the question, \(A\) is invertible right !! So, can you prove that we can always get two vectors from \(\mathbb{R}^n\), say \(\vec{x}\) and \(\vec{y}\), such that the necessary and sufficient condition for the invertiblity of the matrix \(A+\vec{x}\vec{y'}\) is "** \(\vec{y'} A^{-1} \vec{x}\) must be different from \(1\)"** !!

This is a very important result for Statistics Students !! Keep thinking !!

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google