Get inspired by the success stories of our students in IIT JAM MS, ISI  MStat, CMI MSc Data Science.  Learn More 

ISI MStat PSB 2007 Problem 3 | Application of L'hospital Rule

This is a very beautiful sample problem from ISI MStat PSB 2007 Problem 3 based on use of L'hospital Rule . Let's give it a try !!

Problem- ISI MStat PSB 2007 Problem 3


Let f be a function such that \(f(0)=0\) and f has derivatives of all order. Show that \( \lim _{h \to 0} \frac{f(h)+f(-h)}{h^{2}}=f''(0) \)
where \( f''(0)\) is the second derivative of f at 0.

Prerequisites


Differentiability

Continuity

L'hospital rule

Solution :

Let L= \( \lim _{h \to 0} \frac{f(h)+f(-h)}{h^{2}} \) it's a \( \frac{0}{0} \) form as f(0)=0 .

So , here we can use L'hospital rule as f is differentiable .

We get L= \( \lim _{h \to 0} \frac{f'(h)-f'(-h)}{2h} = \lim _{h \to 0} \frac{(f'(h)-f'(0)) -(f'(-h)-f'(0))}{2h} \)

= \( \lim _{h \to 0} \frac{f'(h)-f'(0)}{2h} + \lim _{k \to 0} \frac{f'(k)-f'(0)}{2k} \) , taking -h=k .

= \( \frac{f''(0)}{2} + \frac{f''(0)}{2} \) = \( f''(0) \) . Hence done!


Food For Thought

Let \( f:[0,1] \rightarrow[0,1] \) be a continuous function such \( f^{(n)} := f ( f ( \cdots ( f(n \text{ times} )) \) and assume that there exists a positive integer m such that \( f^{(m)}(x)=x\) for all \( x \in[0,1] .\) Prove that \( f(x)=x \) for all \( x \in[0,1] \)


ISI MStat PSB 2008 Problem 10
Outstanding Statistics Program with Applications

Outstanding Statistics Program with Applications

Subscribe to Cheenta at Youtube


This is a very beautiful sample problem from ISI MStat PSB 2007 Problem 3 based on use of L'hospital Rule . Let's give it a try !!

Problem- ISI MStat PSB 2007 Problem 3


Let f be a function such that \(f(0)=0\) and f has derivatives of all order. Show that \( \lim _{h \to 0} \frac{f(h)+f(-h)}{h^{2}}=f''(0) \)
where \( f''(0)\) is the second derivative of f at 0.

Prerequisites


Differentiability

Continuity

L'hospital rule

Solution :

Let L= \( \lim _{h \to 0} \frac{f(h)+f(-h)}{h^{2}} \) it's a \( \frac{0}{0} \) form as f(0)=0 .

So , here we can use L'hospital rule as f is differentiable .

We get L= \( \lim _{h \to 0} \frac{f'(h)-f'(-h)}{2h} = \lim _{h \to 0} \frac{(f'(h)-f'(0)) -(f'(-h)-f'(0))}{2h} \)

= \( \lim _{h \to 0} \frac{f'(h)-f'(0)}{2h} + \lim _{k \to 0} \frac{f'(k)-f'(0)}{2k} \) , taking -h=k .

= \( \frac{f''(0)}{2} + \frac{f''(0)}{2} \) = \( f''(0) \) . Hence done!


Food For Thought

Let \( f:[0,1] \rightarrow[0,1] \) be a continuous function such \( f^{(n)} := f ( f ( \cdots ( f(n \text{ times} )) \) and assume that there exists a positive integer m such that \( f^{(m)}(x)=x\) for all \( x \in[0,1] .\) Prove that \( f(x)=x \) for all \( x \in[0,1] \)


ISI MStat PSB 2008 Problem 10
Outstanding Statistics Program with Applications

Outstanding Statistics Program with Applications

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
rockethighlight