Cheenta

Academy for Gifted Students

Get inspired by the success stories of our students in IIT JAM MS, ISI MStat, CMI MSc DS. Learn More

This is a very beautiful sample problem from ISI MStat PSB 2007 Problem 1 based on Determinant and Eigen values and Eigen vectors . Let's give it a try !!

Let \( A\) be a \( 2 \times 2\) matrix with real entries such that \( A^{2}=0 .\) Find the determinant of \( I+A\) where I denotes the identity matrix.

Determinant

Eigen Values

Eigen Vectors

Let \( {\lambda}_{1} , {\lambda}_{2} \) be two eigen values of A then , \( {{\lambda}_{1}}^2 , {{\lambda}_{2}}^2 \) .

Now it's given that \( A^2=0 \) , so we have \( {{\lambda}_{1}}^2=0 , {{\lambda}_{2}}^2 =0 \) . You may verify it ! (Hint : use the theorem that \( \lambda \) is a eigen value of matrix B and \( \vec{x}\) is it's corresponding eigen value then we can write \(Bx=\lambda \vec{x} \) or , use \(det(B- \lambda I )=0 \) ).

Hence we have \( {\lambda}_{1} =0 , {\lambda}_{2}=0 \) .

Now , eigen values of Identity matrix I are 1 . So, we can write for eigen value \( \vec{x}\) of (A+I) , \( (A+I) \vec{x}= Ax+I\vec{x}=0+\vec{x}=\vec{x} \).

Thus we get that both the eigen values of (A+1) are 1 . Again we know that determinant of a matrix is product of it's eigen values .

So, we have \(|A+I|=1\).

**Do you think this solution is correct ? **

If yes , then you are absolutely wrong . The mistake is in assuming A and I has same eigen vectors \( Ax+I\vec{x} \ne \vec{x} \)

**Correct Solution**

We have shown in first part of wrong solution that A has eigen values 0 . Hence the characteristic polynomial of A can be written as , \( |A- \lambda I|= {\lambda}^2 \) .

Now taking \( \lambda =-1 \) we get \( |A+ I|={(-1)}^2 \implies |A+I|= 1 \) .

If we are given that \( A^{n} = 0 \) for positive integer n , instead of \( A^2=0 \) then find the same .

This is a very beautiful sample problem from ISI MStat PSB 2007 Problem 1 based on Determinant and Eigen values and Eigen vectors . Let's give it a try !!

Let \( A\) be a \( 2 \times 2\) matrix with real entries such that \( A^{2}=0 .\) Find the determinant of \( I+A\) where I denotes the identity matrix.

Determinant

Eigen Values

Eigen Vectors

Let \( {\lambda}_{1} , {\lambda}_{2} \) be two eigen values of A then , \( {{\lambda}_{1}}^2 , {{\lambda}_{2}}^2 \) .

Now it's given that \( A^2=0 \) , so we have \( {{\lambda}_{1}}^2=0 , {{\lambda}_{2}}^2 =0 \) . You may verify it ! (Hint : use the theorem that \( \lambda \) is a eigen value of matrix B and \( \vec{x}\) is it's corresponding eigen value then we can write \(Bx=\lambda \vec{x} \) or , use \(det(B- \lambda I )=0 \) ).

Hence we have \( {\lambda}_{1} =0 , {\lambda}_{2}=0 \) .

Now , eigen values of Identity matrix I are 1 . So, we can write for eigen value \( \vec{x}\) of (A+I) , \( (A+I) \vec{x}= Ax+I\vec{x}=0+\vec{x}=\vec{x} \).

Thus we get that both the eigen values of (A+1) are 1 . Again we know that determinant of a matrix is product of it's eigen values .

So, we have \(|A+I|=1\).

**Do you think this solution is correct ? **

If yes , then you are absolutely wrong . The mistake is in assuming A and I has same eigen vectors \( Ax+I\vec{x} \ne \vec{x} \)

**Correct Solution**

We have shown in first part of wrong solution that A has eigen values 0 . Hence the characteristic polynomial of A can be written as , \( |A- \lambda I|= {\lambda}^2 \) .

Now taking \( \lambda =-1 \) we get \( |A+ I|={(-1)}^2 \implies |A+I|= 1 \) .

If we are given that \( A^{n} = 0 \) for positive integer n , instead of \( A^2=0 \) then find the same .

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More