Get inspired by the success stories of our students in IIT JAM MS, ISI MStat, CMI MSc DS. Learn More

This is a very subtle sample problem from ISI MStat PSB 2005 Problem 3. Given that one knows the property of orthogonal matrices its just a counting problem. Give it a thought!

Let \(A\) be a \(n \times n\) orthogonal matrix, where \(n\) is even and suppose \(|A|=-1\), where \(|A|\) denotes the determinant of \(A\). Show that \(|I-A|=0\), where \(I\) denotes the \(n \times n\) identity matrix.

Orthogonal Matrix

Eigenvalues

Characteristic Polynomial

This is a very simple problem, when you are aware of the basic facts.

We, know that, the eigenvalues of a orthogonal matrix is \(-1\) and \(1\) .(\(i\) and \(-i\) if its skew-symmetric). But this given matrix \(A\) is not skew-symmetric.(Why??).So let for the matrix \(A\), the algebraic multiplicity of \(-1\) and \(1\) be \(m\) and \(n\), respectively.

So, since \(|A|=-1\), hence the algebraic multiplicity of \(-1\) is definitely odd, since we know by the property of eigenvalues determinant of a matrix is just the product of its eigenvalues.

Now since, \(n\) is even and the algebraic multiplicity of \(-1\) i.e. \(m\) is odd, hence \(n\) is also odd and \(n \ge 1\).

Hence, the Characteristic Polynomial of \(A\), is \(|I\lambda - A |=0\), where \(\lambda\) is the eigenvalue of \(A\), and in this problem \(\lambda=-1 \) or \( 1\).

Hence, putting \(\lambda=1\), we conclude that, \(|I-A|=0\). Hence we are done !!

Now, suppose \(M\) is any non-singular matrix, such that \(M^2=-I\). What can you say about the column space of \(M\) ?

Keep thinking !!

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More