Cheenta

Academy for Gifted Students

Get inspired by the success stories of our students in IIT JAM MS, ISI MStat, CMI MSc DS. Learn More

This is a very beautiful sample problem from ISI MStat PSB 2005 Problem 2 based on finding probability using the binomial distribution. Let's give it a try !!

Let \(X\) and \(Y\) be independent random variables with X having a binomial distribution with parameters 5 and \(1 / 2\) and \(Y\) having a binomial distribution with parameters 7 and \(1 / 2 .\) Find the probability that \(|X-Y|\) is even.

Binomial Distribution

Binomial Expansion

Parity Check

Given \( X \sim \) Bin(5,1/2) and \( Y \sim \) Bin(7,1/2) , and they are independent .

Now , we have to find , \( P(|X-Y|=even ) \)

\( |X-Y| \)= even if both X and Y are even or both X and Y are odd .

Therefore \( P(|X-Y|=even )=P(X=even,Y=even) + P(X=odd , Y=odd) \)

P(X=even , Y= even ) =\( ( {5 \choose 0} {(\frac{1}{2})}^5 + {5 \choose 2} {(\frac{1}{2})}^5 + \cdots + {5 \choose 4} {(\frac{1}{2})}^5 )( {7 \choose 0} {(\frac{1}{2})}^7 + {7 \choose 2} {(\frac{1}{2})}^7 + \cdots + {7 \choose 6} {(\frac{1}{2})}^7)\)

=\( ({(\frac{1}{2})}^5 \times \frac{2^5}{2})({(\frac{1}{2})}^7 \times \frac{2^7}{2}) \)

= \(\frac{1}{4} \)

Similarly , one can find P(X=odd , Y=odd ) which is coming out to be \( \frac{1}{4} \) .

Hence , P(|X-Y|) = 14+1/4 = 1/2 .

Try to find P(X-Y=odd) under the same condition as given in the above problem .

This is a very beautiful sample problem from ISI MStat PSB 2005 Problem 2 based on finding probability using the binomial distribution. Let's give it a try !!

Let \(X\) and \(Y\) be independent random variables with X having a binomial distribution with parameters 5 and \(1 / 2\) and \(Y\) having a binomial distribution with parameters 7 and \(1 / 2 .\) Find the probability that \(|X-Y|\) is even.

Binomial Distribution

Binomial Expansion

Parity Check

Given \( X \sim \) Bin(5,1/2) and \( Y \sim \) Bin(7,1/2) , and they are independent .

Now , we have to find , \( P(|X-Y|=even ) \)

\( |X-Y| \)= even if both X and Y are even or both X and Y are odd .

Therefore \( P(|X-Y|=even )=P(X=even,Y=even) + P(X=odd , Y=odd) \)

P(X=even , Y= even ) =\( ( {5 \choose 0} {(\frac{1}{2})}^5 + {5 \choose 2} {(\frac{1}{2})}^5 + \cdots + {5 \choose 4} {(\frac{1}{2})}^5 )( {7 \choose 0} {(\frac{1}{2})}^7 + {7 \choose 2} {(\frac{1}{2})}^7 + \cdots + {7 \choose 6} {(\frac{1}{2})}^7)\)

=\( ({(\frac{1}{2})}^5 \times \frac{2^5}{2})({(\frac{1}{2})}^7 \times \frac{2^7}{2}) \)

= \(\frac{1}{4} \)

Similarly , one can find P(X=odd , Y=odd ) which is coming out to be \( \frac{1}{4} \) .

Hence , P(|X-Y|) = 14+1/4 = 1/2 .

Try to find P(X-Y=odd) under the same condition as given in the above problem .

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More