INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

May 15, 2017

Differentiability at origin | I.S.I. B.Stat, B.Math Subjective 2017

Try this problem from ISI B.Stat, B.Math Subjective Entrance Exam, 2017 Problem no. 3 based on Differentiability at origin.

Problem: Differentiability at origin

Suppose \( f : \mathbb{R} \to \mathbb{R} \) is a function given by $$
f(x) = \left\{\def\arraystretch{1.2}%
\begin{array}{@{}c@{\quad}l@{}}
1 & \text{if x=1}\\ e^{(x^{10} -1)} + (x-1)^2 \sin \left (\frac {1}{x-1} \right ) & \text{if} x \neq 1\ \end{array}\right.
$$

  • Find f'(1)
  • Evaluate \( \displaystyle{\lim_{u \to \infty } \left [ 100 u - u \sum_{k=1}^{100} f \left (1 + \frac {k}{u} \right ) \right ] }\)

Discussion:

a)First of all we need to check whether \(f'(1)\) exists or not.

We will proceed with the first principle.

Let us check the Right hand derivative(RHD) and Left hand derivative(LHD) of \(f\) at \(x=1\).

RHD at \(x=1\) is

\(\lim_{h\to0}\frac{f(1+h)-f(1)}{h}\\=\lim_{h\to0}\frac{e^{((1+h)^{10}-1)}+h^2\sin( \frac{1}{h})-1}{h}\\=\lim_{h\to0}\frac{e^{((1+h)^{10}-1)}-1}{h}+\lim_{h\to0}h\sin( \frac{1}{h})\\=\lim_{h\to0}\frac{e^{((1+h)^{10}-1)}-1}{(1+h)^{10}-1}\frac{(1+h)^{10}-1}{h}+0=10\)

LHD at \(x=1\) is

\(\lim_{h\to0}\frac{f(1-h)-f(1)}{-h}\\=\lim_{h\to0}\frac{e^{((1-h)^{10}-1)}+h^2\sin( \frac{1}{-h})-1}{-h}\\=\lim_{h\to0}\frac{e^{((1-h)^{10}-1)}-1}{-h}+\lim_{h\to0}(-h)\sin( \frac{1}{-h})\\=\lim_{h\to0}\frac{e^{((1-h)^{10}-1)}-1}{(1-h)^{10}-1}\frac{(1-h)^{10}-1}{-h}+0=10\)

Thus,LHD=RHD.

Hence \(f'(1)\) exists and it is equal to \(10\).

(b)

\( \displaystyle{\lim_{u \to \infty } \left [ 100 u - u \sum_{k=1}^{100} f \left (1 + \frac {k}{u} \right ) \right ] }\)

As u becomes infinitely large k/u becomes arbitrarily small for finite value of k (clearly k is finite as we are interested in k=1 to 100).

Hence \( f \left ( 1 + \frac {k}{u} \right )\) is nothing but f of (1 plus an infinitesimal positive quantity). This tells usĀ \( f \left ( 1 + \frac {k}{u} \right )\) is almost waiting to become the derivative of f at x=1. And we already know that such a derivative exists from part (a).

With this motivation, divide and multiply by \( \frac{k}{u} \).

\( \displaystyle{\lim_{u \to \infty } \left [ 100 u - u \sum_{k=1}^{100} f \left (1 + \frac {k}{u} \right ) \right ] \\ =\lim_ {u \to \infty} \left [ 100 u -\sum_{k=1}^{100} k \frac{f\left (1+\frac{k}{u} \right ) } {\frac{k}{u}} \right ]\\=\lim_ {u \to \infty} \left [ \sum_{k=1}^{100} k \frac{1-f\left (1+\frac{k}{u} \right ) } {\frac{k}{u}} \right ]\\ =\sum_{k=1}^{100} k \lim_ {u \to \infty}\frac{f(1)-f\left (1+\frac{k}{u} \right ) } {\frac{k}{u}} \\ =\sum_{k=1}^{100} k \times(- f'(1)) \\ = -10\times \left(\frac{100\times101}{2} \right )\\ =-50500 }\)

Back to the question paper

Some Useful Links:

One comment on “Differentiability at origin | I.S.I. B.Stat, B.Math Subjective 2017”

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter