INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

September 19, 2016

Irrational root | Tomato subjective Problem 28

PROBLEM: Given $f:$ and $g:$ are two quadratic polynomials with rational coefficients.
Suppose $f(x)=0$ and $g(x)=0$ have a common irrational solution.
Prove that $f(x)=rg(x)$ for all $x$ where $r$ is a rational number.

SOLUTION: Suppose the common irrational root of (\ f(x)) and (\ g(x)) be (\sqrt{a}+b).

Then by properties of irrational roots we can say that the other root of both of them will be (\sqrt{a}-b).

so we can write (\ f(x)=\lambda(x-\sqrt{a}-b)(x-\sqrt{a}+b)) and (\ g(x)=\mu(x-\sqrt{a}-b)(x-\sqrt{a}+b))

so (\frac{g(x)}{f(x)}=\frac{\mu}{\lambda})

therefore,$$\ g(x)=f(x)\frac{\mu}{\lambda}=rf(x)$$.


Theorem:In an equation with real coefficients irrational roots occurs in conjugate pairs.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.