Get inspired by the success stories of our students in IIT JAM MS, ISI  MStat, CMI MSc Data Science.  Learn More 
Problems and Solutions from CMI Entrance 2022.  Learn More 

Intertwined Conditional Probability | ISI MStat 2016 PSB Problem 4

This is an interesting problem from intertwined conditional probability and Bernoulli random variable mixture, which gives a sweet and sour taste to Problem 4 of ISI MStat 2016 PSB.

Problem

Let \(X, Y,\) and \(Z\) be three Bernoulli \(\left(\frac{1}{2}\right)\) random variables such that \(X\) and \(Y\) are independent, \(Y\) and \(Z\) are independent, and \(Z\) and \(X\) are independent.
(a) Show that \(\mathrm{P}(X Y Z=0) \geq \frac{3}{4}\).
(b) Show that if equality holds in (a), then $$
Z=
\begin{cases}
1 & \text { if } X=Y, \\
0 & \text { if } X \neq Y\\
\end{cases}
$$

Prerequisites

  • Principle of Inclusion and Exclusion \(|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|\)
  • Basic Probability Theory
  • Conditional Probability
  • \(abc = 0\) iff \( a= 0\) or \( b= 0\) or \(c = 0\).
  • \( \cup\) = or; \( \cap\) = and

Solution

(a)

\( P(XYZ = 0) \iff P( { X = 0} \cup {Y = 0} \cup {Z = 0}) \)

$$= P(X = 0) + P(Y = 0) + P(Z= 0) - P({ X = 0} \cap {Y = 0}) - P({Y = 0} \cap {Z= 0}) - P({X = 0} \cap {Z= 0}) + P({X = 0} \cap {Y = 0} \cap {Z= 0}). $$

We use the fact that \(X\) and \(Y\) are independent, \(Y\) and \(Z\) are independent, and \(Z\) and \(X\) are independent.

$$= P(X = 0) + P(Y = 0) + P(Z= 0) - P({ X = 0})P({Y = 0}) - P({Y = 0})P({Z= 0}) - P({X = 0})P({Z= 0}) + P({X = 0},{Y = 0},{Z= 0})$$.

\(X, Y,\) and \(Z\) be three Bernoulli \(\left(\frac{1}{2}\right)\) random variables. Hence,

\( P(XYZ = 0) = \frac{3}{4} + P({X = 0},{Y = 0},{Z= 0}) \geq \frac{3}{4}\).

(b)

\( P(XYZ = 0) = \frac{3}{4} \iff P({X = 0},{Y = 0},{Z= 0}) = 0 \).

Now, this is just a logical game with conditional probability.

\( P({X = 0} |{Y = 0},{Z= 0}) = 0 \Rightarrow P({Z= 0} |{Y = 0},{X = 1}) = 1\).

\( P({Y = 0} |{X = 0},{Z= 0}) = 0 \Rightarrow P({Z= 0} |{X = 0},{Y = 1}) = 1\).

\( P({Z = 0} |{X = 0},{Y= 0}) = 0 \Rightarrow P({Z = 1} |{X = 0},{Y= 0}) = 1\).

\( P( Z = 0) = P({X = 1},{Y = 0},{Z= 0}) + P({X = 0},{Y = 1},{Z= 0}) + P({X = 1},{Y = 1},{Z= 0}) + P({X = 0},{Y = 0},{Z= 0})\)

\( = \frac{1}{4} + \frac{1}{4} + P({X = 1},{Y = 1},{Z= 0}) \).

Now, \(Z\) is a Bernoulli \(\left(\frac{1}{2}\right)\) random variable. So, \(P(Z = 0) =\frac{1}{2}\) \( \Rightarrow P({X = 1},{Y = 1},{Z= 0}) = 0 \Rightarrow P({Z = 0} | {Y = 1},{X= 1}) = 0 \).

\( P({Z= 0} |{Y = 0},{X = 1}) = 1\).

\(P({Z= 0} |{X = 0},{Y = 1}) = 1\).

\(P({Z = 1} |{X = 0},{Y= 0}) = 1\).

\( P({Z = 1} | {Y = 1},{X= 1}) = 1\).

Hence, $$
Z=
\begin{cases}
1 & \text { if } X=Y, \\
0 & \text { if } X \neq Y\\
\end{cases}
$$.

This is an interesting problem from intertwined conditional probability and Bernoulli random variable mixture, which gives a sweet and sour taste to Problem 4 of ISI MStat 2016 PSB.

Problem

Let \(X, Y,\) and \(Z\) be three Bernoulli \(\left(\frac{1}{2}\right)\) random variables such that \(X\) and \(Y\) are independent, \(Y\) and \(Z\) are independent, and \(Z\) and \(X\) are independent.
(a) Show that \(\mathrm{P}(X Y Z=0) \geq \frac{3}{4}\).
(b) Show that if equality holds in (a), then $$
Z=
\begin{cases}
1 & \text { if } X=Y, \\
0 & \text { if } X \neq Y\\
\end{cases}
$$

Prerequisites

  • Principle of Inclusion and Exclusion \(|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|\)
  • Basic Probability Theory
  • Conditional Probability
  • \(abc = 0\) iff \( a= 0\) or \( b= 0\) or \(c = 0\).
  • \( \cup\) = or; \( \cap\) = and

Solution

(a)

\( P(XYZ = 0) \iff P( { X = 0} \cup {Y = 0} \cup {Z = 0}) \)

$$= P(X = 0) + P(Y = 0) + P(Z= 0) - P({ X = 0} \cap {Y = 0}) - P({Y = 0} \cap {Z= 0}) - P({X = 0} \cap {Z= 0}) + P({X = 0} \cap {Y = 0} \cap {Z= 0}). $$

We use the fact that \(X\) and \(Y\) are independent, \(Y\) and \(Z\) are independent, and \(Z\) and \(X\) are independent.

$$= P(X = 0) + P(Y = 0) + P(Z= 0) - P({ X = 0})P({Y = 0}) - P({Y = 0})P({Z= 0}) - P({X = 0})P({Z= 0}) + P({X = 0},{Y = 0},{Z= 0})$$.

\(X, Y,\) and \(Z\) be three Bernoulli \(\left(\frac{1}{2}\right)\) random variables. Hence,

\( P(XYZ = 0) = \frac{3}{4} + P({X = 0},{Y = 0},{Z= 0}) \geq \frac{3}{4}\).

(b)

\( P(XYZ = 0) = \frac{3}{4} \iff P({X = 0},{Y = 0},{Z= 0}) = 0 \).

Now, this is just a logical game with conditional probability.

\( P({X = 0} |{Y = 0},{Z= 0}) = 0 \Rightarrow P({Z= 0} |{Y = 0},{X = 1}) = 1\).

\( P({Y = 0} |{X = 0},{Z= 0}) = 0 \Rightarrow P({Z= 0} |{X = 0},{Y = 1}) = 1\).

\( P({Z = 0} |{X = 0},{Y= 0}) = 0 \Rightarrow P({Z = 1} |{X = 0},{Y= 0}) = 1\).

\( P( Z = 0) = P({X = 1},{Y = 0},{Z= 0}) + P({X = 0},{Y = 1},{Z= 0}) + P({X = 1},{Y = 1},{Z= 0}) + P({X = 0},{Y = 0},{Z= 0})\)

\( = \frac{1}{4} + \frac{1}{4} + P({X = 1},{Y = 1},{Z= 0}) \).

Now, \(Z\) is a Bernoulli \(\left(\frac{1}{2}\right)\) random variable. So, \(P(Z = 0) =\frac{1}{2}\) \( \Rightarrow P({X = 1},{Y = 1},{Z= 0}) = 0 \Rightarrow P({Z = 0} | {Y = 1},{X= 1}) = 0 \).

\( P({Z= 0} |{Y = 0},{X = 1}) = 1\).

\(P({Z= 0} |{X = 0},{Y = 1}) = 1\).

\(P({Z = 1} |{X = 0},{Y= 0}) = 1\).

\( P({Z = 1} | {Y = 1},{X= 1}) = 1\).

Hence, $$
Z=
\begin{cases}
1 & \text { if } X=Y, \\
0 & \text { if } X \neq Y\\
\end{cases}
$$.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com