# Understand the problem

The limit \(\lim_{n \to \infty}n^2 \int_0^1\frac{1}{(1+x^2)^n}\) is equal to

- 1
- 0
- \(+\infty\)
- \(1/2\)

# Start with hints

##### Source of the problem

TIFR 2019 GS Part A, Problem 6

##### Topic

Limit and Integration

##### Difficulty Level

Hard

##### Suggested Book

### Introduction to Real Analysis by Donald R. Sherbert and Robert G. Bartle

Do you really need a hint? Try it first!

Can you try with beta function? Let me give you some formulas: \(\int_0^{\pi/2}\cos^{2n-2}\theta d\theta=\frac 12B(\frac 12(0+1), \frac 12(2n-2+1)=\frac 12B(\frac 12, \frac {2n-1}{2})\)\(=\frac 12\frac{\Gamma({\frac 12})\Gamma(\frac {2n-1}{2})}{\Gamma(n+1)}=\frac 12\sqrt{\pi}(\frac{2n-1}{2}-1)\frac{\Gamma(\frac {2n-1}{2}-1)}{n!}\)

\(\frac 12\sqrt{\pi}(\frac{2n-1}{2}-1)\frac{\Gamma(\frac {2n-1}{2}-1)}{n!}=\frac 12\sqrt{\pi}\frac{2n-3}2\times \frac{2n-5}2\times \cdots \frac{1}2\times \sqrt{\pi}\) \(=\frac{\pi}2 \times \frac{(2n-2)(2n-3)\cdots 2.1}{(2n-2)(2n-4)\cdots 2 \times 2^{n-1}}\)

\(\frac{\pi}2 \times \frac{(2n-2)(2n-3)\cdots 2.1}{(2n-2)(2n-4)\cdots 2 \times 2^{n-1}}\)

\(=\frac{\pi}{2.4^{n-1}} \times \frac{n}{2n} \times \frac{(2n)!}{n!(n-1)!} \times \frac{1}{2n-1}=\frac{n\pi}{(2n-1).4^{n}} \times {2n \choose n}\)

Now \(\frac{n\pi}{(2n-1).4^{n}} \times {2n \choose n}=\frac{1}{4^{n}} \times {2n \choose n}\sim \frac{1}{\sqrt{\pi n}}\)

Put \(x=\tan(\theta)\) in the main expression. And observe how much less the expression would be from \(\int_0^{\pi/2}\cos^{2n-2}\theta d\theta\).

\(\int_0^{\pi/2}\cos^{2n-2}\theta d\theta=\int_0^{\pi/4}\cos^{2n-2}\theta d\theta+\int_{\pi/4}^{\pi/2}\cos^{2n-2}\theta d\theta<\int_0^{\pi/4}\cos^{2n-2}\theta d\theta+\frac{1}{2^{2n-2}}\frac{\pi}{4}\)

So we are done with the completion of Hint 5 and as well as the solution of the question

# Watch the video (Coming Soon)

# Connected Program at Cheenta

#### College Mathematics Program

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.