Try this beautiful problem Based on Integer, useful for ISI B.Stat Entrance.

Integer | ISI B.Stat Entrance | Problem 156


Let n be any integer. Then \(n(n + 1)(2n + 1)\)

  • (a) is a perfect square
  • (b) is an odd number
  • (c) is an integral multiple of 6
  • (d) does not necessarily have any foregoing properties.

Key Concepts


Integer

Perfect square numbers

Odd number

Check the Answer


But try the problem first…

Answer: (c) is an integral multiple of 6

Source
Suggested Reading

TOMATO, Problem 156

Challenges and Thrills in Pre College Mathematics

Try with Hints


First hint

\(n(n + 1)\) is divisible by \(2\) as they are consecutive integers.

If \(n\not\equiv 0\) (mod 3) then there arise two casess……..
Case 1,,

Let \(n \equiv 1\) (mod 3)
Then \(2n + 1\) is divisible by 3.

Let \(n \equiv2\) (mod 3)
Then\( n + 1\) is divisible by \(3\)

Can you now finish the problem ……….

Final Step


Now, if \(n\) is divisible by \(3\), then we can say that \(n(n + 1)(2n + 1)\) is always
divisible by \(2*3 = 6\)

Therefore option (c) is the correct

Subscribe to Cheenta at Youtube