# INMO 2020 Problem 4

Let $n\ge 3$ be an integer and $a_1,a_2,\cdots a_n$ be real numbers satisfying $1. If $\Sigma_ia_i=2n$ then prove that $2+a_1+a_1a_2+a_1a_2a_3+\cdots +a_1a_2\cdots a_{n-1}\le a_1a_2\cdots a_n$.

The conditions hint at inequalities involving an order, such as the rearrangement and Chebychev inequalities. Also note that $a_i=2$ for all $i$ is an equality case, hence we should try to use inequalities in such a way that matches the equality case.

[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.12.2"]

The RHS can be rewritten as $a_1a_2\cdots a_n= a_1a_2\cdots a_n-a_1a_2\cdots a_{n-1}+a_1a_2\cdots a_{n-1}-a_1a_2\cdots a_{n-2}+a_1a_2\cdots a_{n-2}\cdots -a_1+a_1=a_1a_2\cdots a_{n-1}(a_n-1)+a_1a_2\cdots a_{n-2}(a_{n-1}-1)+\cdots+ a_1(a_2-1)+a_1$. That is, $a_1a_2\cdots a_n-1= a_1a_2\cdots a_n-a_1a_2\cdots a_{n-1}+a_1a_2\cdots a_{n-1}-a_1a_2\cdots a_{n-2}+a_1a_2\cdots a_{n-2}\cdots -a_1+a_1=a_1a_2\cdots a_{n-1}(a_n-1)+a_1a_2\cdots a_{n-2}(a_{n-1}-1)+\cdots+ a_1(a_2-1)+(a_1-1)$.

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.12.2"]

Now Chebychev inequality gives $\frac{a_1a_2\cdots a_n-1}{n}= \frac{a_1a_2\cdot a_{n-1}(a_n-1)+a_1a_2\cdot a_{n-2}(a_{n-1}-1)+\cdots+ a_1(a_2-1)+(a_1-1)}{n}\ge \frac{1+a_1+a_1a_2+\cdots +a_1a_2\cdots a_{n-1}}{n}\cdot\frac{(a_1-1+a_2-1+\cdots +a_n-1)}{n}=\frac{1+a_1+a_1a_2+\cdots +a_1a_2\cdots a_{n-1}}{n}$. Cancelling the denominators, we get the desired result.