**Question:**

*True/False?*

The inequality \( \sqrt{n+1}- \sqrt{n} < \frac{1}{ \sqrt{n} } \) is false for all n such that \( 101 \le n \le 2000 \)

*Hint:*

Simplify the given inequality

**Discussion:**

\( \sqrt{n+1}- \sqrt{n} = \frac {n+1- n}{ \sqrt{n+1}+ \sqrt{n} } \)

\(= \frac {1}{ \sqrt{n+1}+ \sqrt{n}} < \frac {1}{ \sqrt{n}} \) This holds for any natural number \(n\).

So the inequality is actually true for all natural numbers.