# Understand the problem

Let a, b, c be positive real numbers such that a + b + c = 1. Prove that $$ \frac {a} {a^2 + b^3 + c^3} + \frac {b}{ b^2 + c^3 + a^3 } + \frac {c} { c^2 + a^3 + b^3 } \leq \frac{1}{5abc} $$

##### Source of the problem

Regional Math Olympiad, 2019 Problem 3

##### Topic

Inequality

##### Difficulty Level

6/10

##### Suggested Book

Challenges and Thrills in Pre College Mathematics

# Start with hints

Do you really need a hint? Try it first!

**The clue: Number 5 in the right-hand side!** We will be applying AM-GM inequality. But first, to get the 5 on the right, we need 5 terms in the left (or bunch of five terms).

Try to use a+b+c =1 to cook it up!

In the first term’s denominator, we have \( a^2 + b^3 + c^3 \). Multiply 1 to \( a^2 \) that is multiply by a + b + c (nothing changes because, multiplying by does not change anything). Hence we have \(a^2 \cdot 1 + b^3 + c^3 = a^2 ( a + b + c) + b^3 + c^3 \) Expanding we have \( a^3 + b^3 + c^3 + a^2 b + a^2 c \) Now apply AM – GM inequality to this we have $$ \frac{ a^3 + b^3 + c^3 + a^2 b + a^2 c}{5} \geq (a^3 \cdot b^3 \cdot c^3 \cdot a^2 b \cdot a^2 c )^{1/5} $$ Therefore we have $$ a^3 + b^3 + c^3 + a^2 b + a^2 c \geq 5 \cdot (a^7 b^4 c^4)^{1/5} $$ Taking the reciprocal we have and noting that the left hand side is still \( a^2 + b^3 + c^3 \) we have $$ \frac {1} {a^2 + b^3 + c^3} \leq \frac {1}{5 \cdot (a^{7/5} b^{4/5} c^{4/5} } $$ Multiplying the numerator and denominator by a we have the desired expression in the left. $$ \frac {a} {a^2 + b^3 + c^3} \leq \frac {a}{5 \cdot (a^{7/5} b^{4/5} c^{4/5} } $$ Simplifying $$ \frac {a} {a^2 + b^3 + c^3} \leq \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } $$

**Now try computing the same for the other two terms on the left.**$$ \frac {a} {a^2 + b^3 + c^3} \leq \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } $$ $$ \frac {b} {b^2 + c^3 + a^3} \leq \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} } $$ $$ \frac {c} {c^2 + a^3 + b^3} \leq \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} } $$ Adding we have $$ \frac {a} {a^2 + b^3 + c^3} + \frac {b} {b^2 + c^3 + a^3} + \frac {c} {c^2 + a^3 + b^3} \leq \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } + \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} } \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} } $$ Now apply AM- GM Inequality one more time to the left hand term.

$$ \frac{ \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } + \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} } + \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} }}{3} \leq ( \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } \cdot \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} } \cdot \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} })^{1/3} $$ Simplifying we have $$ \frac{ \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } + \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} } + \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} }}{3} \leq ( \frac {1}{5^3 \cdot (a^{10/5} b^{10/5} c^{10/5} } )^{1/3} $$ Simplifying further we have $$ \frac {1}{5 \cdot (a^{2/5} b^{4/5} c^{4/5} } + \frac {1}{5 \cdot (a^{4/5} b^{2/5} c^{4/5} } + \frac {1}{5 \cdot (a^{4/5} b^{4/5} c^{2/5} } \leq 3 \cdot \frac {(abc)^{1/3}}{5abc} $$ Finally we know that \( 3 \cdot (abc)^{1/3} \leq 1 \). Why? Apply AM-GM to a, b, c $$ \frac{a+b+c}{3} \geq (abc)^{1/3} $$ Since a + b + c = 1 we have the result.

# Watch video

# Connected Program at Cheenta

#### Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Google