How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# Understand the problem

f(x) =$\frac{1}{x+2cos x}$
.
Determine the set {y ∈ R : y = f(x), x ≥ 0}.

I.S.I. (Indian Statistical Institute) B.Stat/B.Math Entrance Examination 2013. Subjective Problem no. 2.

Medium

# Problems In CALCULUS OF ONE VARIABLE

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.22.4" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]

Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.22.4"]

This problem simply ask for the range of the function defined by f(x)=$\frac {1}{x+2cosx}$ compute the derivative of the function = $\frac {2sinx-1}{(x+2cosx)^2}$

[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.22.4"]

First extrema occurs at $x$= $\frac{\pi}{6}$ The first derivative is negetive in the interval [ 0, $\frac{\pi}{6}$] hence the function is decreasing in this interval f(0)=$\frac{1}{2}$ ; f($\frac{\pi}{6}$)=$\frac{1}{\frac{\pi}{6}+ {\sqrt{3}}}$

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.22.4"]

For x>$\frac{\pi}{6}$ the derivative becomes positive , and remain so upto x=$\frac{5\pi}{6}$ after which it becomes negative  thus we have minima at x= $\frac{\pi}{6}$ and maxima at x= $\frac{5\pi}{6}$ f($\frac{5\pi}{6}$)= $\frac{1}{\frac{5\pi}{6}+\sqrt{3}}$ note that as $x\rightarrow \infty$the denominator of the function increases

[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.22.4"]

Hence we can conclude that    $f(x)\rightarrow0$ clearly x=$\frac{5\pi}{6}$ gives the global maxima  so , the range is (0,$\frac{1}{\frac{5\pi}{6}+\sqrt{3}}$]

# Connected Program at Cheenta

Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.

The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.

# Similar Problem

[/et_pb_text][et_pb_post_slider include_categories="10" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]