Categories
Math Olympiad Singapore Math Olympiad

Functional Equation Problem | SMO, 2013 – Problem19 (Senior Section)

The simplest example of power mean inequality is the arithmetic mean – geometric mean inequality. Learn in this self-learning module for math olympiad

Try this beautiful problem from Singapore Mathematics Olympiad based on Functional Equation.

Problem – Functional Equation (SMO Exam)


Let f and g be functions such that for all real numbers x and y,

\( g (f (x+y)) = f( x ) + (x+y) g (y)\).

Find the value of \( g(0) + g (1) + ……………………+ g (2013) \)

  • 1
  • 3
  • 2
  • 0

Key Concepts


Functional Equation

Funcion

Arbitrary Numbers

Check the Answer


Answer: 0

Singapore Mathemaics Olympiad

Challenges and thrills

Try with Hints


We can start this problem by considering y = -x.

Then \( g (f (0) ) = f (x) \) for all x. This \(f\) is is a constant function ; namely

\( f (x) = c \) for some c.

Try the rest of the sum ……………………………………………………

For all value of x,y we have

\( (x+y) g(y) = g(f(x+y)) – f(x) = g(c) – c = 0 \)

Since x + y is arbitrary , we must have \( g (y) = 0 \) for all y .Hence

\( g (0) + g ( 1 ) + …………………………..+ g(2013) = 0 \) (Answer).

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.