Select Page

# Herstein's Restrictions

Home Forums College Mathematics, GRE, TIFR Herstein's Restrictions

Tagged:

This topic contains 2 replies, has 2 voices, and was last updated by  SaSA ::::: 2 months, 1 week ago.

Viewing 3 posts - 1 through 3 (of 3 total)
• Author
Posts
• #29357

SaSA :::::
Participant

<p style=”text-align: left;”>Let G be a group of order pq, where p>q are primes. Prove that if q doesn’t divide p-1, then G is cyclic, without using Sylow theorems. (You can only use material developed up to section 2.9 of IN.Herstein.)</p>

#29562

Srijit Mukherjee
Participant
#29955

SaSA :::::
Participant

Thanks, I saw this, but the problem is that Herstein has not introduced much of these ideas up to this problem. I found something different, it goes like this, center Z of G has order either 1 or pq, if q doesn’t divide p-1 it can be shown that a normal subgroup of order p is contained in Z, therefore Z=G, so G is abelian and it has an element of order pq.

• This reply was modified 2 months, 1 week ago by  SaSA :::::.
Viewing 3 posts - 1 through 3 (of 3 total)

You must be logged in to reply to this topic.