What are we learning?

We will learn to find tangent plane by solving an IIT JAM 2018 Problem. This is the Question no. 5 of the IIT JAM 2018 Solved Paper Series. Go through this link for Question no. 6. Gradient is one of the key concepts of vector calculus. We will use this problem from IIT JAM 2018 to clear our concepts.

 

Understand the problem

The tangent plane to the surface z= \sqrt{x^2+3y^2} at (1,1,2) is given by
  1. \(x-3y+z=0\)
  2. \(x+3y-2z=0\)
  3. \(2x+4y-3z=0\)
  4. \(3x-7y+2z=0\)
Source of the problem
IIT Jam 2018
Key competency
Gradient
Difficulty Level
Easy

Look at the knowledge graph…

Start with hints

Do you really need a hint? Try it first!

Given a differentiable function \(Z=f(x,y)\), Observe that when we are asked to find a tangent plane at \((x_0,y_0,z_0)\) then the picture that comes in our mind is a plane that touches the curve at a point.

When we are in dimension \(2\) it is just a line, (easy to visualize), dim 3 a plane (still visible), dim 4,5,…. a surface which is hard to see, but we can plug in \(x=x_0\) in the equation \(z=f(x,y)\) to have \(z=f(x_0,y)\) which is just a curve in 2D then we can visualize the tangent line at \(y=y_0\) is a part of the tangent plane \(z=f(x,y)\) isn’t it?? The same thing is true of about the tangent line at \(x=x_0\) for the curve \(z=f(x,y_0)\). These \(f(x,y_0)\) and \(f(x_0,y)\) are called sections of the curve \(f(x,y)=z\) . Here \((x_0,y_0,z_0)=(1,2,3)\). So, quickly find out \(f(1,y)\) and \(f(x,1)\).    

You can see that \(f(1,y)=\sqrt{1+3y^{2}}\) and \(f(x,1)= \sqrt{x^{2}+3}\) Now observe that the tangent plane of the curve \(z=f(x,y)\) is a plane right !! What will be the basic structure of a plane at \((x_0,y_0,z_0)\)?

It is a \(a(x-x_0)+ b(y-y_0)+ c(z-z_0)=0\) ———————–(1) Now see that \((x_0,y_0,z_0)=(1,1,2)\) is already given in the question. Hence the unknown is \((a,b,c)\) . Equation (1) implies \(z = z_0+ \frac{a}{c}(x-x_0)+ \frac{b}{c}(y-y_0)\) Differentiating the equation by \(x\) we get, \(z_x= \frac{a}{c}\) Differentiating the equation by \(y\) we get, \(z_y= \frac{b}{c}\) Hence the equation of the tangent plane is \(z=z_0+z_x|_{(x_0,y_0)}(x-x_0)+ z_y|_{(x_0,y_0)}(y-y_0)\) So calculate \(z_x\) and \(z_y\) at \((x_0,y_0)\)

\(z_x = \frac{d}{dx}f(x,1)= \frac{2x}{2\sqrt{x^{2}+3}}|_{(1,1)} = \frac{2}{4}= \frac{1}{2}\) \(z_y=\frac{d}{dy}f(1,y)=\frac{6y}{2\sqrt{1+3y^2}}|_{(1,1)}=\frac{6}{2 \times 2}=\frac{3}{2}\) So the equation of the tangent line is \(z= 2+\frac{1}{2}(x-1)+\frac{3}{2}(y-1)\) \(\Rightarrow 2z= 4+x-1+3y-3\)

\(x+3y-2z=0\) (Ans)

Try to answer this question

Play with graph

Connected Program at Cheenta

College Mathematics Program

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.

Similar Problems

Partial Differentiation | IIT JAM 2017 | Problem 5

Try this problem from IIT JAM 2017 exam (Problem 5).It deals with calculating the partial derivative of a multi-variable function.

Rolle’s Theorem | IIT JAM 2017 | Problem 10

Try this problem from IIT JAM 2017 exam (Problem 10).You will need the concept of Rolle’s Theorem to solve it. You can use the sequential hints.

Radius of Convergence of a Power series | IIT JAM 2016

Try this problem from IIT JAM 2017 exam (Problem 48) and know how to determine radius of convergence of a power series.We provide sequential Hints.

Eigen Value of a matrix | IIT JAM 2017 | Problem 58

Try this problem from IIT JAM 2017 exam (Problem 58) and know how to evaluate Eigen value of a Matrix. We provide sequential hints.

Limit of a function | IIT JAM 2017 | Problem 8

Try this problem from IIT JAM 2017 exam (Problem 8). It deals with evaluating Limit of a function. We provide sequential hints.

Gradient, Divergence and Curl | IIT JAM 2014 | Problem 5

Try this problem from IIT JAM 2014 exam. It deals with calculating Gradient of a scalar point function, Divergence and curl of a vector point function point function.. We provide sequential hints.

Differential Equation| IIT JAM 2014 | Problem 4

Try this problem from IIT JAM 2014 exam. It requires knowledge of exact differential equation and partial derivative. We provide sequential hints.

Definite Integral as Limit of a sum | ISI QMS | QMA 2019

Try this problem from ISI QMS 2019 exam. It requires knowledge Real Analysis and integral calculus and is based on Definite Integral as Limit of a sum.

Minimal Polynomial of a Matrix | TIFR GS-2018 (Part B)

Try this beautiful problem from TIFR GS 2018 (Part B) based on Minimal Polynomial of a Matrix. This problem requires knowledge linear algebra.

Definite Integral & Expansion of a Determinant |ISI QMS 2019 |QMB Problem 7(a)

Try this beautiful problem from ISI QMS 2019 exam. This problem requires knowledge of determinant and definite integral. Sequential hints are given here.