Understand the problem

In a badminton singles tournament, each player played against all the others
exactly once and each game had a winner. After all the games, each player
listed the names of all the players she defeated as well as the names of all the
players defeated by the players defeated by her. For instance, if A defeats B
and B defeats C, then in the list of A both B and C are included. Prove that
at least one player listed the names of all other players.

Source of the problem

I.S.I. (Indian Statistical Institute) B.Stat/B.Math Entrance Examination 2013. Subjective Problem no. 4.

Topic
combinatorics  

Difficulty Level

7.5 out of 10

Suggested Book

Problem Solving Strategies by Engel

 

Start with hints

Do you really need a hint? Try it first!

 Do you know what is Well-ordering principle ? it says that Every nonempty set A of nonnegative integers has a minimal element and a maximal element , which need not to be unique . now some time this simple property help us to get very nice solution to a problem , can you some how apply this property .        

Use the method of contradiction , first of all assume that there is no player which have the given property .  Now try to use the property of hint 1 .  

 If there is no such list , A’s list has the maximum no. of players  Now , if  A does not have the certain property then there exist another another player B , who has won against A . Now B’s list contain the name of A [ by the 1st condition ] and all the names of the players defeated by A [ by the 2nd condition]  

Now , can you find out some contradiction ,  yes exactly ….. B’s list contain more number of element than A So, A’s list must have the certain property .            

Connected Program at Cheenta

I.S.I. & C.M.I. Entrance Program

Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.

The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.

Similar Problem

Consistency and MVUE |ISI MStat PSB 2006 Problem 9

This is a very simple sample problem from ISI MStat PSB 2006 Problem 9. It’s based on point estimation and finding consistent estimator and a minimum variance unbiased estimator and recognizing the subtle relation between the two types. Go for it!

Balls-go-round |ISI MStat PSB 2013 Problem 10

This is a very beautiful sample problem from ISI MStat PSB 2013 Problem 10. It’s based mainly on counting and following the norms stated in the problem itself. Be careful while thinking !

ISI MStat PSB 2005 Problem 5 | Uniformity of Uniform

This is a simple and elegant sample problem from ISI MStat PSB 2005 Problem 5. It’s based the mixture of Discrete and Continuous Uniform Distribution, the simplicity in the problem actually fools us, and we miss subtle happenings. Be careful while thinking !

ISI MStat PSB 2012 Problem 2 | Dealing with Polynomials using Calculus

This is a very beautiful sample problem from ISI MStat PSB 2012 Problem 2 based on calculus . Let’s give it a try !!

ISI MSTAT PSB 2011 Problem 4 | Digging deep into Multivariate Normal

This is an interesting problem which tests the student’s knowledge on how he visualizes the normal distribution in higher dimensions.

ISI MStat PSB 2012 Problem 5 | Application of Central Limit Theorem

This is a very beautiful sample problem from ISI MStat PSB 2012 Problem 5 based on the Application of Central Limit Theorem.

ISI MStat PSB 2007 Problem 7 | Conditional Expectation

This is a very beautiful sample problem from ISI MStat PSB 2007 Problem 7. It’s a very simple problem, which very much rely on conditioning and if you don’t take it seriously, you will make thing complicated. Fun to think, go for it !!

ISI MStat Entrance Exam books based on Syllabus

Are you preparing for ISI MStat Entrance Exams? Here is the list of useful books for ISI MStat Entrance Exam based on the syllabus.

ISI MStat PSB 2008 Problem 8 | Bivariate Normal Distribution

This is a very beautiful sample problem from ISI MStat PSB 2008 Problem 8. It’s a very simple problem, based on bivariate normal distribution, which again teaches us that observing the right thing makes a seemingly laborious problem beautiful . Fun to think, go for it !!

ISI MStat PSB 2004 Problem 6 | Minimum Variance Unbiased Estimators

This is a very beautiful sample problem from ISI MStat PSB 2004 Problem 6. It’s a very simple problem, and its simplicity is its beauty . Fun to think, go for it !!