Understand the problem

In a badminton singles tournament, each player played against all the others
exactly once and each game had a winner. After all the games, each player
listed the names of all the players she defeated as well as the names of all the
players defeated by the players defeated by her. For instance, if A defeats B
and B defeats C, then in the list of A both B and C are included. Prove that
at least one player listed the names of all other players.

Source of the problem

I.S.I. (Indian Statistical Institute) B.Stat/B.Math Entrance Examination 2013. Subjective Problem no. 4.

Topic
combinatorics  

Difficulty Level

7.5 out of 10

Suggested Book

Problem Solving Strategies by Engel

 

Start with hints

Do you really need a hint? Try it first!

 Do you know what is Well-ordering principle ? it says that Every nonempty set A of nonnegative integers has a minimal element and a maximal element , which need not to be unique . now some time this simple property help us to get very nice solution to a problem , can you some how apply this property .        

Use the method of contradiction , first of all assume that there is no player which have the given property .  Now try to use the property of hint 1 .  

 If there is no such list , A’s list has the maximum no. of players  Now , if  A does not have the certain property then there exist another another player B , who has won against A . Now B’s list contain the name of A [ by the 1st condition ] and all the names of the players defeated by A [ by the 2nd condition]  

Now , can you find out some contradiction ,  yes exactly ….. B’s list contain more number of element than A So, A’s list must have the certain property .            

Connected Program at Cheenta

I.S.I. & C.M.I. Entrance Program

Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.

The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.

Similar Problem

ISI Entrance 2020 Problems and Solutions – B.Stat & B.Math

Problems and Solutions of ISI BStat and BMath Entrance 2020 of Indian Statistical Institute.

Testing of Hypothesis | ISI MStat 2016 PSB Problem 9

This is a problem from the ISI MStat Entrance Examination,2016 making us realize the beautiful connection between exponential and geometric distribution and a smooth application of Central Limit Theorem.

ISI MStat PSB 2006 Problem 8 | Bernoullian Beauty

This is a very simple and regular sample problem from ISI MStat PSB 2009 Problem 8. It It is based on testing the nature of the mean of Exponential distribution. Give it a Try it !

ISI MStat PSB 2009 Problem 8 | How big is the Mean?

This is a very simple and regular sample problem from ISI MStat PSB 2009 Problem 8. It It is based on testing the nature of the mean of Exponential distribution. Give it a Try it !

ISI MStat PSB 2009 Problem 4 | Polarized to Normal

This is a very beautiful sample problem from ISI MStat PSB 2009 Problem 4. It is based on the idea of Polar Transformations, but need a good deal of observation o realize that. Give it a Try it !

ISI MStat PSB 2008 Problem 7 | Finding the Distribution of a Random Variable

This is a very beautiful sample problem from ISI MStat PSB 2008 Problem 7 based on finding the distribution of a random variable. Let’s give it a try !!

ISI MStat PSB 2008 Problem 2 | Definite integral as the limit of the Riemann sum

This is a very beautiful sample problem from ISI MStat PSB 2008 Problem 2 based on definite integral as the limit of the Riemann sum . Let’s give it a try !!

ISI MStat PSB 2008 Problem 3 | Functional equation

This is a very beautiful sample problem from ISI MStat PSB 2008 Problem 3 based on Functional equation . Let’s give it a try !!