Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Equations with number of variables | AIME I, 2009 | Question 14

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2009 based on Equations with a number of variables.

Equations with number of variables - AIME 2009


For t=1,2,3,4, define \(S^{t}=a^{t}_1+a^{t}_2+...+a^{t}_{350}\), where \(a_{i}\in\){1,2,3,4}. If \(S_{1}=513, S_{4}=4745\), find the minimum possible value for \(S_{2}\).

  • is 905
  • is 250
  • is 840
  • cannot be determined from the given information

Key Concepts


Series

Theory of Equations

Number Theory

Check the Answer


Answer: is 905.

AIME, 2009, Question 14

Polynomials by Barbeau

Try with Hints


First hint

j=1,2,3,4, let \(m_{j}\) number of \(a_{i}\) s = j then \(m_{1}+m{2}+m{3}+m{4}=350\), \(S_{1}=m_{1}+2m_{2}+3m_{3}+4m_{4}=513\) \(S_{4}=m_{1}+2^{4}m_{2}+3^{4}m_{3}+4^{4}m_{4}=4745\)

Second Hint

Subtracting first from second, then first from third yields \(m_{2}+2m_{3}+3m_{4}=163,\) and \(15m_{2}+80m_{3}+255m_{4}=4395\) Now subtracting 15 times first from second gives \(50m_{3}+210m_{4}=1950\) or \(5m_{3}+21m_{4}=195\) Then \(m_{4}\) multiple of 5, \(m_{4}\) either 0 or 5

Final Step

If \(m_{4}=0\) then \(m_{j}\) s (226,85,39,0) and if \(m_{4}\)=5 then \(m_{j}\) s (215,112,18,5) Then \(S_{2}=1^{2}(226)+2^{2}(85)+3^{2}(39)+4^{2}(0)=917\) and \(S_{2}=1^{2}(215)+2^{2}(112)+3^{2}(18)+4^{2}(5)=905\) Then min 905.

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com