Categories
AIME I Algebra Arithmetic Functional Equations Math Olympiad USA Math Olympiad

Equation of X and Y | AIME I, 1993 | Question 13

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1993 based on Equation of X and Y.

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1993 based on Equation of X and Y.

Equation of X and Y – AIME I, 1993


Jenny and Kenny are walking in the same direction, Kenny at 3 feet per second and Jenny at 1 foot per second, on parallel paths that are 200 feet apart. A tall circular building 100 feet in diameter is centred mid way between the paths . At the instant when the building first blocks the line of sight between Jenny and Kenny, they are 200 feet apart. Let t be amount of time, in seconds, Before Jenny and Kenny, can see each other again. If t is written as a fraction in lowest terms, find the sum of numerator and denominator.

  • is 107
  • is 163
  • is 840
  • cannot be determined from the given information

Key Concepts


Variables

Equations

Algebra

Check the Answer


But try the problem first…

Answer: is 163.

Source
Suggested Reading

AIME I, 1993, Question 13

Elementary Algebra by Hall and Knight

Try with Hints


First hint

Let circle be of radius 50

Let start points be (-50,100),(-50,-100) then at time t, end points (-50+t,100),(-50+3t,-100)

or, equation and equation of circle is

y=\(\frac{-100}{t}x+200 -\frac{5000}{t}\) is first equation

\(50^2=x^2+y^2\) is second equation

Second Hint

when they see again then

\(\frac{-x}{y}=\frac{-100}{t}\)

or, \(y=\frac{xt}{100}\)

Final Step

solving in second equation gives \(x=\frac{5000}{\sqrt{100^2+t^2}}\)

or, \(y=\frac{xt}{100}\)

solving in first equation for t gives \(t=\frac{160}{3}\)

or, 160+3=163.

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.