Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Direct product of groups: TIFR 2018 Part A, Problem 9

[et_pb_section fb_built="1" _builder_version="3.22.4" fb_built="1" _i="0" _address="0"][et_pb_row _builder_version="3.25" _i="0" _address="0.0"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||" _i="0" _address="0.0.0"][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_padding="20px|20px|20px|20px" _i="0" _address="0.0.0.0"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.27" text_font="Raleway||||||||" background_color="#f4f4f4" box_shadow_style="preset2" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" _i="1" _address="0.0.0.1"]Let G, H be finite groups. Then any subgroup of G × H is equal to A × B for some subgroups A<G and B<H[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25" _i="1" _address="0.1"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||" _i="0" _address="0.1.0"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.27" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px" _i="0" _address="0.1.0.0"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="3.27" hover_enabled="0" _i="0" _address="0.1.0.0.0"]TATA INSTITUTE OF FUNDAMENTAL RESEARCH -GS-2018 (Mathematics)  -Part A -Question 9[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="3.27" hover_enabled="0" _i="1" _address="0.1.0.0.1" open="off"]Group Theory [/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.27" hover_enabled="0" _i="2" _address="0.1.0.0.2" open="off"]Medium [/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="3.27" hover_enabled="0" _i="3" _address="0.1.0.0.3" open="off"]Abstract Algebra Dummit and Foote[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.23.3" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" _i="1" _address="0.1.0.1"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.27" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" hover_enabled="0" _i="2" _address="0.1.0.2"][et_pb_tab title="Hint 0" _builder_version="3.22.4" _i="0" _address="0.1.0.2.0"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.27" hover_enabled="0" _i="1" _address="0.1.0.2.1"]Consider K \(\leq\) G x H . Now if ( a , b ) \(\to\) K then  \( a^{-1} , b^{-1}\)  \(\to\)  K . Also if ( a , b) , ( p,q )  \(\in\) K then ( ap , bq ) , ( pa , qb )  \(\in\) K  So , G \(|_k\) = { g \(\in\) G | ( g , h ) \(\in\) K  for some h \(\in\) H }  is a subgroup of G . Similarly,  H \(|_k\) \(\leq\) H . [/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.27" hover_enabled="0" _i="2" _address="0.1.0.2.2"]We have arrived to the conclusion that G\(|_k\) \(\leq\) G &  H\(|_k\) \(\leq\) H . Now use this as a fact  to guess the answer . Are you sure that  G\(|_k\)  x  H\(|_k\) = K ?  I mean that who confirms that K can be within as A X B [/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.27" hover_enabled="0" _i="3" _address="0.1.0.2.3"]Yes this is true that for every g \(\in\) G\(|_K\)  \(\exists\) k s.t  ( g , h )  \(\in\) K . But  G\(|_K\) x  H\(|_K\) contain  ( g , h )  \(\forall h\)    \(\in\)   H\(|_K\) .  This is certainly having a bigger expectation . [/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.27" hover_enabled="0" _i="4" _address="0.1.0.2.4"]So , here is a nice counter example . Take G = \(\mathbb{Z_2}\)  &  H = \(\mathbb{Z_4}\) Consider a cyclic subgroup of G x H ; < ( 1 , 1 ) > = { ( 1 , 1 ) , ( 0, 2 ) , ( 1, 3) , (0,0) } Observe that G\(|_k\) = G &  H\(|_k\) = H But  < ( 1 , 1 ) > \(\neq\)  G x H  Hence , the answer is false.[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.23.3" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" _i="3" _address="0.1.0.3"]

Watch the video

[/et_pb_text][et_pb_code _builder_version="3.26.4" _i="4" _address="0.1.0.4"]
[/et_pb_code][et_pb_text _builder_version="3.23.3" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" _i="5" _address="0.1.0.5"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="College Mathematics Program" url="https://www.cheenta.com/collegeprogram/" image="https://www.cheenta.com/wp-content/uploads/2018/03/College-1.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" border_color_all="#e02b20" link_option_url="https://www.cheenta.com/collegeprogram/" _i="6" _address="0.1.0.6"]

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/collegeprogram/" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3" background_layout="dark" _i="7" _address="0.1.0.7"][/et_pb_button][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" _i="8" _address="0.1.0.8"]

Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="12" _builder_version="3.23.3" _i="9" _address="0.1.0.9"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3" _i="10" _address="0.1.0.10"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com