2014 AMC 8 Problem 24 Number Theory in Median

 Understand the Problem

One day the Beverage Barn sold $252$ cans of soda to $100$ customers, and every customer bought at least one can of soda. What is the maximum possible median number of cans of soda bought per customer on that day? $\textbf{(A) }2.5\qquad\textbf{(B) }3.0\qquad\textbf{(C) }3.5\qquad\textbf{(D) }4.0\qquad \textbf{(E) }4.5$
Source of the problem

2014 AMC 8 Problem 24

Topic

Number Theory in Median

Difficulty Level
Easy
Suggested Book
Mathematical Circles

Start with hints

Do you really need a hint? Try it first!

Recall the concept of Median . https://en.wikipedia.org/wiki/Median
 As here 252 cans of soda sold to  even no of customers i.e.  to 100 customers , so median will be the average of the 50th and 51st largest amount of cans per  person .  
First they each have one can atleast one can . Now think for the rest 152 cans and 50th and 51st customers . Then in order to proceed divide 100 customers in two groups as first 49 customers and second 51 customers .
To minimize the first 49, they will  be sold no more cans. Now 152 cans left to divide among next 51 customers . Taking \( \frac {152}{51} \) gives us 2 and a remainder of 50. Seeing this, the largest number of cans the 50th person could have is 3 ( including the can in 1st distribution), which leaves 4( including the can in 1st distribution)  to the rest of the people. The average of 3 and 4 is 3.5  . So the maximum possible median is 3.5  . 

Watch the video

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Problem on Series and Sequences | SMO, 2012 | Problem 23

Try this beautiful problem from Singapore Mathematics Olympiad, 2012 based on Series and Sequences. You may use sequential hints to solve the problem.

Theory of Equations | AIME 2015 | Question 10

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2015 based on Theory of Equations.

Trigonometry Problem | AIME 2015 | Question 13

Try this beautiful problem number 13 from the American Invitational Mathematics Examination, AIME, 2015 based on Trigonometry.

Problem from Probability | AMC 8, 2004 | Problem no. 21

Try this beautiful problem from Probability from AMC 8, 2004, Problem 21.You may use sequential hints to solve the problem.

Smallest Perimeter of Triangle | AIME 2015 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2015 based on Smallest Perimeter of Triangle.

Intersection of two Squares | AMC 8, 2004 | Problem 25

Try this beautiful problem from Geometry based on Intersection of two Squares AMC-8, 2004,Problem-25. You may use sequential hints to solve the problem.

Probability | AMC 8, 2004 | Problem no. 22

Try this beautiful problem from Probability from AMC-8, 2004 Problem 22. You may use sequential hints to solve the problem.

Area of Rectangle Problem | AMC 8, 2004 | Problem 24

Try this beautiful problem from GeometryAMC-8, 2004 ,Problem-24, based on area of Rectangle. You may use sequential hints to solve the problem.

Radius of the Circle | AMC-8, 2005 | Problem 25

Try this beautiful problem from Geometry:Radius of the Circle from AMC-8(2005). You may use sequential hints to solve the problem

Area of Isosceles Triangle | AMC 8, 2005 | Problem 23

Try this beautiful problem from AMC-8, 2005, Problem-23 based on the area of an isosceles triangle. You may use sequential hints to solve the problem