2014 AMC 8 Problem 22 Number Theory

Understand the problem

A $2$-digit number is such that the product of the digits plus the sum of the digits is equal to the number. What is the units digit of the number? $\textbf{(A) }1\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }7\qquad \textbf{(E) }9$
Source of the problem
2014 AMC 8 problem 22
Topic
Number Theory
Difficulty Level
Easy
Suggested Book
Mathematical Circles

Start with hints

Do you really need a hint? Try it first!

Proceed by assuming the number to be \( 10a + b \ where \ a \ and \ b \ are  \ the \ digits \) .
Since the number is equal to the product of the digits \( a \times b \)  plus the sum of the digits \( (a + b) \)  .  Arrange an equation and proceed .
So \( 10a + b =  (a \times b) + (a + b)  \) .   Simplify and find the unit digit  i.e. \( b \)  .
Simplifying \( 10  \times a = (b+ 1) \times a \) . Dividing by \( a \), we have that \( b+ 1 = 10 \) . Therefore, the unit digit, \( b \) , is  9 .  

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Fly trapped inside cubical box | AMC 10A, 2010| Problem No 20

Try this beautiful Problem on Geometry on cube from AMC 10A, 2010. Problem-20. You may use sequential hints to solve the problem.

Measure of angle | AMC 10A, 2019| Problem No 13

Try this beautiful Problem on Geometry from AMC 10A, 2019.Problem-13. You may use sequential hints to solve the problem.

Sum of Sides of Triangle | PRMO-2018 | Problem No-17

Try this beautiful Problem on Geometry from PRMO -2018.You may use sequential hints to solve the problem.

Recursion Problem | AMC 10A, 2019| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-15, You may use sequential hints to solve the problem.

Roots of Polynomial | AMC 10A, 2019| Problem No 24

Try this beautiful Problem on Algebra from AMC 10A, 2019. Problem-24, You may use sequential hints to solve the problem.

Set of Fractions | AMC 10A, 2015| Problem No 15

Try this beautiful Problem on Algebra from AMC 10A, 2015. Problem-15. You may use sequential hints to solve the problem.

Indian Olympiad Qualifier in Mathematics – IOQM

Due to COVID 19 Pandemic, the Maths Olympiad stages in India has changed. Here is the announcement published by HBCSE: Important Announcement [Updated:14-Sept-2020]The national Olympiad programme in mathematics culminating in the International Mathematical Olympiad...

Positive Integers and Quadrilateral | AMC 10A 2015 | Sum 24

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2015. Problem-24. You may use sequential hints to solve the problem.

Rectangular Piece of Paper | AMC 10A, 2014| Problem No 22

Try this beautiful Problem on Rectangle and triangle from AMC 10A, 2014. Problem-23. You may use sequential hints to solve the problem.

Probability in Marbles | AMC 10A, 2010| Problem No 23

Try this beautiful Problem on Probability from AMC 10A, 2010. Problem-23. You may use sequential hints to solve the problem.